Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T09:50:31.227Z Has data issue: false hasContentIssue false

Deposition And Characterization Of Metal/Polyaniline Bi-Layers

Published online by Cambridge University Press:  21 March 2011

Y. Liu
Affiliation:
University of Missouri-Rolla, Dept. of Metallurgical Engineering and Materials Research Center, Rolla, MO 65409, U.S.A
M. J. O'Keefe
Affiliation:
University of Missouri-Rolla, Dept. of Metallurgical Engineering and Materials Research Center, Rolla, MO 65409, U.S.A
A. Beyaz
Affiliation:
University of Missouri-Rolla, Dept. of Chemistry and Materials Research Center, Rolla, MO 65409, U.S.A
C. Singleton
Affiliation:
University of Missouri-Rolla, Dept. of Chemistry and Materials Research Center, Rolla, MO 65409, U.S.A
T. P. Schuman
Affiliation:
University of Missouri-Rolla, Dept. of Chemistry and Materials Research Center, Rolla, MO 65409, U.S.A
Get access

Abstract

In this study bi-layers of metal/polyaniline (PAni) films were deposited and characterized in order to investigate the interaction of thin film metals with doped and de-doped PAni. The bilayers were fabricated by depositing PAni films on flat substrates via solution chemistry and then depositing metallic films by physical vapor deposition. The oxidation state of the PAni was varied from the doped emeraldine salt to a de-doped emeraldine base to a de-doped and fully reduced leucoemeraldine base. Aluminum and iron thin films were then magnetron sputter deposited onto the PAni films to form bi-layer structures. Characterization of the fabricated bi-layers by scanning electron microscopy, current-voltage measurements, and Auger electron spectroscopy was done to investigate the morphology, electrical properties and chemical composition of the samples. Results from the study indicate that the type of metal and the doping level of the PAni influence the interactions and properties of metal/PAni interfaces and films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pandey, S. S., Misra, S. C. K., Malhotra, B. D., Chandra, S.. J. Appl. Polym. Sci. 44, 911 (1992).Google Scholar
2. Misra, S. C. K., Ram, M. K., Pandey, S. S., Malhotra, B. D., Chandra, S.. Appl. Phys. Lett. 61(10), 1219 (1992).Google Scholar
3. Gholamian, M., Contractor, A. Q.. J. Electroanal. Chem. 289, 69 (1990).Google Scholar
4. Kost, K. M., Baratak, D. E., Kazee, B., Kuwana, T.. Anal. Chem. 60, 2379 (1988).Google Scholar
5. Hatchett, D. W., Josowicz, M., Janata, J.. Chem. Mater. 11, 2989 (1999).Google Scholar
6. Fahlman, M., Jasty, S., Epstein, A. J.. Synth. Met. 85, 1323 (1997).Google Scholar
7. Mirmohseni, A., Oladegaragoze, A.. Synth. Met. 114, 105 (2000).Google Scholar
8. MacDiarmid, A. and Epstein, A. J., Faraday Discuss Chem. Soc. 88, 317 (1989).Google Scholar
9. Gangopadhyay, R., De, A.. Chem. Mater. 12, 608 (2000).Google Scholar
10. Tsakova, V., Borissov, D.. Electrochem. Comm. 2, 511 (2000).Google Scholar
11. Abrantes, L. M., Correia, J. P.. Mater. Sci. Forum 191, 235 (1995).Google Scholar
12. Plank, R. V., NiNardo, N. J., Vohs, J. M.. J. Vac. Sci. Technol. A15(3) May/Jun, 538 (1997).Google Scholar
13. Plank, R. V., NiNardo, N. J., Vohs, J. M.. Synth. Met. 85, 1 (1997).Google Scholar
14. Lim, S. L., Tan, K. L., Kang, E. T.. J. Vac. Sci. Technol. A16(1) Jan/Feb, 13 (1998).Google Scholar
15. Lim, S. L., Tan, K. L., Kang, E. T.. Langmuir. 14, 5305 (1998).Google Scholar
16. Ma, Z. H., Lim, S. L., Tan, K. L., Li, S., Kang, E. T.. J. Mat. Sci. 11(01), 311 (2000).Google Scholar
17. Kinlen, P. J., Lu, J., Ding, Y., Graham, C. R., Remsen, E. E.. Macromol. 31 1753 (1998).Google Scholar
18. Sitaram, P., Stoffer, J. O., and O'Keefe, T. J., J. of Coatings Tech. 69, 65 (1997).Google Scholar