Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T14:47:54.218Z Has data issue: false hasContentIssue false

Determination of Critical Volumes in Recording Media

Published online by Cambridge University Press:  10 February 2011

K. O'Grady
Affiliation:
School of Electronic Engineering and Computer Systems University of Wales, Dean Street, Bangor LL57 1 UT, UK
P. Dova
Affiliation:
School of Electronic Engineering and Computer Systems University of Wales, Dean Street, Bangor LL57 1 UT, UK
H. Laidler
Affiliation:
School of Electronic Engineering and Computer Systems University of Wales, Dean Street, Bangor LL57 1 UT, UK
Get access

Abstract

In this overview paper the concept of thermal activation of magnetisation reversal is reviewed in terms of the Wohlfarth-Gaunt formalism. This formalism gave rise to the concept of an activation volume of reversal. Other techniques have been developed for the determination of activation or critical volumes of reversal and these are reviewed. It is found that these methods give the same approximate value for the activation volume but the only method based on micromagnetism is the waiting time experiment which is consistent with Gaunt. Factors which affect the activation volume such as incoherent reversal and intergranular coupling are discussed together with measures that may be required in order to generate ultrahigh density recording media that are relatively free from thermal loss of signal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Stoner, E.C. and Wohlfarth, E.P., 240 p.599642 (1948).10.1098/rsta.1948.0007Google Scholar
[2] Néel, L., Ann Geophys. 5 p.99 (1949).Google Scholar
[3] Street, R. and Woolley, J.C., Proc. Phys. Soc. p.562572 (1949).Google Scholar
[4] el-Hilo, M., O'Grady, K., Chantrell, R.W. and Dickson, D.P.E., J. Mag. and Mag.Mater 123 p3034 (1993).10.1016/0304-8853(93)90010-YGoogle Scholar
[5] Gaunt, P., J. Appl. Phys. 59 (12) p41294132 (1986).Google Scholar
[6] Street, R. Wooley, J.C. and Smith, P.B., Proc.Phys.Soc. B65 p.679 (1952).Google Scholar
[7] Wohlfarth, E.P., Phys.Lett., 70A, 5 and 6, p.489.Google Scholar
[8] Estrin, Y. McCormick, P.G. Street, R., J.Phys:Condens. Matter 1 p.48454851 (1989).Google Scholar
[9] el-Hilo (submitted to J.Phys.D.).Google Scholar
[10] Lyberatos, A. and Chantrell, R.W., J.Phys:Condens.Matter 9 p.26232643 (1997).Google Scholar
[11] Doyle proceedings Intermag. 98 IEEE Trans.Mag. (in press)Google Scholar
[12] Sharrock, M.P. IEEE Trans.Mag. 26(1) p193197 (1990).Google Scholar
[13] de Witte, A-M, O'Grady, K, Coverdale, G.N. and Chantrell, R.W., J.Mag. and Mag. Mater 88 p.183193 (1990).10.1016/S0304-8853(97)90028-7Google Scholar
[14] el-Hilo, M., de Witte, A. M., O'Grady, K, and Chantrell, R.W., J. Mag.and Mag.Mater 117 p.307310 (1992).Google Scholar
[15] Bruno, P., Bayreuther, G, Beauvillian, P., Chappert, C., Lugert, G., Renard, D., Renard, J.P. and Seiden, J. J.Appl.Phys. 68 (11) p.575957666 (1990).10.1063/1.346944Google Scholar
[16] Sellmeyer, D.J., Shen, Z.S., Liu, Y., Lion, S.H., Malhotra, S.S. and Robertson, B.W., Scripta Metallurgica et Materialia 33 p. 15451552 (1995).10.1016/0956-716X(95)00430-4Google Scholar
[17] Mayo, P.I., O'Grady, K., Chantrell, R.W., Cambridge, J.A., Sanders, I.L., Yogi, T., Howard, K. J. Mag. and Mag. Mater 95 p.109117 (1991).10.1016/0304-8853(91)90221-UGoogle Scholar
[18] Dova, P. O'Grady, K., Doerner, M.F., and Mirzamaami, M. IEEE Trans. Mag. 33(5) p.29532955 (1997)Google Scholar
[19] de Witte, A-M. and O'Grady, K. IEEE Trans. Mag. 26(5) p.18101812 (1990)10.1109/20.104534Google Scholar