Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T04:44:45.233Z Has data issue: false hasContentIssue false

Determination of the Distribution of Ion Implantation Boron in Silicon

Published online by Cambridge University Press:  17 March 2011

Te-Sheng Wang
Affiliation:
Dept of Electronic & Electrical Engineering, University of Sheffield, Sheffield, S1 3JD, UK
A.G. Cullis
Affiliation:
Dept of Electronic & Electrical Engineering, University of Sheffield, Sheffield, S1 3JD, UK
E.J.H. Collart
Affiliation:
Applied Materials, Thermal Processing and Implant Division, Foundry Lane, Horsham, West Sussex, RH13 5PY, UK
A.J. Murrell
Affiliation:
Applied Materials, Thermal Processing and Implant Division, Foundry Lane, Horsham, West Sussex, RH13 5PY, UK
M.A. Foad
Affiliation:
Applied Materials, Transistor Doping and Junction Division, 3050 Bowers Avenue, Santa Clara, CA 95054, USA
Get access

Abstract

Boron is the most important p-type dopant in Si and it is essential that, especially for low energy implantation, both as-implanted B distributions and those produced by annealing should be characterized in very great detail to obtain the required process control for advanced device applications. While secondary ion mass spectrometry (SIMS) is ordinarily employed for this purpose, in the present studies implant concentration profiles have been determined by direct B imaging with approximately nanometer depth and lateral resolution using energy-filtered imaging in the transmission electron microscopy. The as-implanted B impurity profile is correlated with theoretical expectations: differences with respect to the results of SIMS measurements are discussed. Changes in the B distribution and clustering that occur after annealing of the implanted layers are also described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. The National Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, CA, 1994).Google Scholar
2. Crabb, E., Logan, R., Snare, J., Agnello, P. and Sun, J., Proceedings IEEE International Electron Devices Meeting 571 (1996).Google Scholar
3. Collart, E. J. H., Weemers, K., Gravestijn, D. J. and Berkum, J. G. M. van, J. Vac. Sci. Technol. B 16, 280 (1998).Google Scholar
4. Current, M. I., Lopes, D., Foad, M. A., England, J. G., Jones, C. and Su, D., J. Vac. Sci. Technol. B 16, 327 (1998).Google Scholar
5. Eaglesham, D. J., Stolk, P. A., Gossmann, H.-J. and Poate, J. M., Appl. Phys. Lett 65, 2305 (1994).Google Scholar
6. Zhang, L. H., Jones, K. S., Chi, P. H. and Simons, D. S., Appl. Phys. Lett. 67, 2025 (1995).Google Scholar
7. Stolk, P. A., Gossmann, H.-J., Eaglesham, D. J., Jacobson, D. C., J. Poate, M. and Luftman, H. S., Appl.Phys.Lett. 66, 568 (1995).Google Scholar
8. Okamoto, M., Hashimoto, K. and Takayanagi, K., Appl. Phys. Lett. 70, 978 (1997).Google Scholar
9. Huizing, H. G. A., Visser, C.C.G., Cowern, N. E.B., Stolk, P. A. and Kruif, R. C. M. de, Appl. Phys. Lett 69, 1211 (1996).Google Scholar
10. Pelaz, L., Jaraiz, M., Gilmer, G. H., Gossmann, H.-J., Rafferty, C. S., Eaglesham, D. J. and Poate, J. M., Appl. Phys. Lett. 70, 2285 (1997).Google Scholar
11. Schroer, E., Privitera, V., Priolo, F., Napolitani, E. and Carnera, A., Appl. Phys. Lett. 74, 3996 (1999).Google Scholar
12. Uematsu, M., J. Appl. Phys. 84, 4781 (1998).Google Scholar
13. Barna, Á., Tóth, L., Pécz, B. and Radnóczi, G., Proceedings, IOP, Microsc. Semicond. Mater. Conf., 479 (1997).Google Scholar
14. Caturla, M.-J., Foad, M. A. and Rubia, T. Diaz de la, in Proc. Ion Implantation Technology. 98 (IIT-98), Tyoto, 1998 Google Scholar
15. Krivenec, O. L., Kundmann, M. K., and Bourrat, X., Mater. Res. Soc. Symp. Proc. 332, 341 (1994).Google Scholar