Skip to main content Accessibility help

Development of a-SiC Thin Film Photoelectrodes and Hybrid PV/a-SiC Devices for Photoelectrochemical Water Splitting

  • J. Hu (a1), F. Zhu (a1), A. Kunrath (a1) and N. Gaillard (a2)


In this communication, we report our efforts to develop amorphous silicon carbide (a-SiC) thin film photoelectrodes integrated with Si solar cells to form a monolithic, hybrid photovoltaic (PV)/a-SiC device capable of water splitting using sunlight as the only energy source. The main photoelectrochemical (PEC) properties of both the a-SiC photoelectrode and complete hybrid device fabricated by the plasma enhanced chemical vapor deposition (PECVD) technique at low temperature (≤ 200°C) are discussed. The surface modification with metal nanoparticles, which is critical to PEC performances of the hybrid device, is also described. We show that, with the an a-SiC photoelectrode of p-i-n configuration and a high performance silicon heterojunction solar cell as driver, the photocurrent of the hybrid PV/a-SiC device has reached ∼5 mA/cm2. Additionally, the durability of such device has reached ∼800 hours in acidic electrolyte. Finally, we describe a roadmap for achieving the solar-to-hydrogen efficiency of >10% by optimizing the device configuration.



Hide All
1. Fujishima, A. and Honda, K., Nature, 238, 37 (1972).10.1038/238037a0
2. Miller, E.L., Rocheleau, R.E., Deng, X.M., International Journal of Hydrogen Energy, 28, 615 (2003).10.1016/S0360-3199(02)00144-1
3. Zhu, F., Hu, J., Matulionis, I., Deutsch, T., Gaillard, N., Kunrath, A., Miller, E., and Madan, A., Philosophical Magazine, 89 (28-30), 2723 (2009).10.1080/14786430902740729
4. Hu, J., Zhu, F., Matulionis, I., Deutsch, T., Gaillard, N., Miller, E., and Madan, A., Res. Soc. Symp. Proc. 1171, 1171–S03–05 (2009)10.1557/PROC-1171-S03-05
5. Matulionis, I., Hu, J., Zhu, F., Gallon, J., Gaillard, N., Deutsch, T., Miller, E., and Madan, A., Proc. SPIE. 7770, 32 (2010).
6. Zhu, F., Matulionis, I., Gaillard, N., Chang, Y., Hu, J., Gallon, J., and Madan, A., Res. Soc. Symp. Proc. 1539, 1073 (2013).10.1557/opl.2013.1073
7. Gaillard, N, Chang, Y, Kaneshiro, J, Deangelis, A, Miller, EL, SPIE Solar Hydrogen and Nanotechnology, Vol. 7770, 860970 (2010).
8. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292(1977)10.1063/1.89674
9. Miller, E. L., DeAngelis, A., Mallory, S., Chapt. 7, “Multijunction Approaches to Photoelectrochemical Water Splitting” in Photoelectrochemical Hydrogen Production, Electronic Materials: Science & Technology, Vol.102, 2012, Springer.
10. Chen, Z., Dinh, H., and Miller, E., Photoelectrochemical Water Splitting – Standards, Experimental Methods, and Protocols”, Springer, 2013, Chapter 2, pp.13.10.1007/978-1-4614-8298-7
11. Reece, S. Y., Hamel, J. A., Thomas, K. S., Jarvi, D., Esswein, A. J., Pijpers, J. J. H., Nocera, D. G., Science, 334, 645 (2011).10.1126/science.1209816



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed