Skip to main content
    • Aa
    • Aa

Dewetting on the Surface of Rutile

  • Shelley R. Gilliss (a1), N. Ravishankar (a2) and C. Barry (a1)

After annealing a continuous SiO2 film on the (001) surface of TiO2, the film dewets and then spreads to form a complex pattern. The final droplet morphology displays a densely branching morphology similar to those seen in computer-simulated models. It is proposed that Bénard-Marangoni convection cells form within the film before dewetting occurs. The formation of Bénard-Marangoni convection cells prior to dewetting results in the uniform size and spacing of the droplets on the surface. These convection cells form at temperature when the TiO2 substrate dissolves into the SiO2 thin film. The change in composition results in regions of differing surface tensions and therefore leads to the formation of the convection cells.

Hide All
1.Chen D.A., Bartlet M.C., Hwang R.Q. and McCarty K.F.. Surf. Sci. 2000;450: 7897.
2.Muscat J. and Harrison N.M.. Surf. Sci. 2000;446: 119127.
3.Jak J.J.J., Konstapel C., Kreuningen A. van, Chrost J., Verhoweven J. and Frenken J.W.M.. Surf. Sci. 2001;474: 2836.
4.Dingwell D.B., Paris E., Seifert F., Mottana A. and Romano C.. Phys. Chem. Miner. 1994;21: 501509.
5.Dingwell D.B.. in Structure, Dynamics and Properties of Silicate Melts, Vol. 32, Mineral. Soc, Amer., Washington (1995). pp. 2166.
6.Dingwell D.B.. in Ultrahigh-Pressure Mineralogy, Vol. 37, Mineral. Soc, Amer., Washington (1998). pp. 397424.
7.Liska M., Simurka P., Antalik J. and Perichta P.. Chem. Geol. 1996;128: 199206.
8.Higazy A.A., Hussein A.M., Ewaida M.A. and Elhofy M.I.. Phys. Chem. Glass. 1987;28: 164167.
9.Paris E., Dingwell D.B., Seifert F.A., Mottana A. and Romano C.. Phys. Chem. Miner. 1994;21: 510515.
10.Schroeder H.. Physics of Thin Films: Advances in Research and Development, Academic Press, New York (1969).
11.Miska H.A.. Engineered Materials Handbook, Vol. 4, ASM, Metals Park, OH (1992).
12.Karthikeyan A. and Almeida R.M.. J. of Non-Cryst. Sol. 2000;274: 169174.
13.Yamaguci T. and Kanai K.. J. Am. Ceram. Soc. 1994;77: 847–48.
14.Burleson M.. The Ceramic Glaze Handbook, Lark Books, New York (2001).
15.Hopper R.. The Ceramic Spectrum: A simplified approach to glaze and color development, Chilton Book Company, Radnor, PA (1984).
16.Li M., Hebenstreit W., Diebold U., Tyryshkin A.M., Bowman M.K., Dunham G.G. and Henderson M.A.. J. Phys. Chem. 2000;104: 49444950.
17.Bénard H.. Rev. Gen. Sci. Pure Appl. 1900;11: 12611309.
18.Koschmieder E.L.. Bénard Cells and Taylor Vortices, Cambridge University Press, New York (1993).
19.Cartwright J.H.E., Piro O. and Villacampa A.I.. Physica A 2002;314: 291298.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 51 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.