Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T14:11:23.860Z Has data issue: false hasContentIssue false

Dispersoids in Intermetallic Alloys: a Review

Published online by Cambridge University Press:  28 February 2011

Carl C. Koch*
Affiliation:
Materials Science & Engineering Department, North Carolina State University, Box 7907, Raleigh, NC 27695–7907
Get access

Abstract

The existing work on structure and mechanical behavior of intermetallic alloys containing dispersed second phases — dispersoids — is reviewed. The dispersoids considered in the review are those given the conventional definition as inert, stable, insoluble phases in the matrix, such as oxides. The only detailed mechanistic studies of dispersoids in intermetallics have been carried out on the model material Cu3Au, and these did not include elevated temperature, eg. creep, mechanical behavior. A number of investigations on dispersoids in the potentially important elevated temperature materials — the aluminides — are reviewed. The materials discussed include FeAI, Fe3AI, NiAI, Ni3AI, and Ti3Al. Many of these studies are preliminary in nature and much more research anddevelopment is needed to allow for the design of intermetallic-dispersoid materials with improved fabricability and elevated temperature performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Lenel, F. V., Ansell, G. S., and Nelson, E. C., Trans AIME, 209, 117 (1957).Google Scholar
2) Preston, O. and Grant, J. J., Trans AIME, 221, 164 (1961).Google Scholar
3) Schreiner, H., Pulvermetallurgie elektrischen Kontakte, in Reine und angewandte Metallkunde in Einzeldarstellung vol. 20 ed. Kbster, W. (Springer, Berlin) 1964.Google Scholar
4) Frommeyer, G., “Metallic Composite Materials” in Physical Metallurgy, 3rd edition, ed. by Cahn, R. W. and Haasen, P., North Holland 1983, p. 1860.Google Scholar
5) Strudel, J.-L., “Mechanical Properties of Multiphase Alloys” ibid pp. 1415-1416, and references cited therein.Google Scholar
6) Ansell, G. S., “The Mechanism of Dispersion Strengthening: A Review”, in “Oxide Dispersion Strengthening” Proc. 2nd Bolton Landing Conference, ed. by Ansell, G. S., Cooper, T. D., and Lenel, F. V., Gordon and Breach, 1968, p. 61.Google Scholar
7) Ashby, M. F., “The Theory of the Critical Shear Stress and Work Hardening of Dispersion-Hardened Crystals”, ibid, p. 143.Google Scholar
8) Orowan, E., Symposium on Internal Stresses in Metals and Alloys, Institute of Metals (1948), p. 451.Google Scholar
9) Brown, L. M. and Ham, R. K., in “Strengthening Methods in Crystals”, edited Kelly, A. and Nicholson, R. B., Wiley, New York, 1971, p. 9.Google Scholar
10) Ashby, M. F., ibid, pp. 137192.Google Scholar
11) Sastry, S. M. L. and Ramaswami, B., Acta Metallurgica, 23, 1517 (1975).Google Scholar
12) Ashby, M. F., Phil. Mag. 21, 399 (1970).Google Scholar
13) Pattanaik, S. and Ardell, A. J., Phil. Mag. A, 45 1047 (1982).Google Scholar
14) Ardell, A. J. and Pattanaik, S., Phil. Mag. A, 50 361 (1984).Google Scholar
15) Seybolt, A. U., Trans. ASM, 59, 860 (1966).Google Scholar
16) Jaffe, R. J., Allen, B. C., and Maykuth, D. J., Plansee Proceedings, 1961, Metallwerke Plansee-Springer, Vienna (1962).Google Scholar
17) Sherman, M. and Vedula, K., J. Mater. Science, 21, 1974, (1986).Google Scholar
18) Sainfort, G., Mouturat, P., Pepin, P., Petit, J., Cabane, G., and Soluse, M., Mem. Sci. Rev. Met. 60, 125 (1963).Google Scholar
19) Strothers, S., Mantravadi, N., and Vedula, K., this sypmposium.Google Scholar
20) Slaughter, E. R. and Das, S. K. in “Proc. of the 2nd International Conf. on Rapid Solidification Processing”, ed. Mehrabian, R., Kear, B. H., and Cohen, M., Claitor's Publishing Division, Baton Rouge, La., (1980) p. 354.Google Scholar
21) McKamey, C. G., Liu, C. T., Cathcart, J. V., David, S. A., and Lee, E. H., Evaluation of Mechanical and Metallurgical Properties of Fe3AI-BasedAluminides, ORNL/TM-10125.Google Scholar
22) McKamey, C. G., Liu, C. T., and Horton, J. A., Effect of Aluminum Addition on Ductility and Yield Strength of Fe3AI Alloys with 0.5 wt.% TiB2,this symposium.Google Scholar
23) Lipsitt, H. A., High-Temperature Ordered Intermetallic Alloys, ed. by Koch, C. C., Liu, C. T., and Stoloff, N. S., MRS Symposia Proceedings 39 (1985) p. 351.Google Scholar
24) Sastry, S. M. L. and Lipsitt, H. A., Acta Met. 25 1279 (1977).Google Scholar
25) Konitzer, D. G. and Fraser, H. L., Mat. Res. Soc. Symposium Proc., 39, 437 (1985).Google Scholar
26) Konitzer, D. G., Muddle, B. C. and Fraser, H. L., Scripta Met. 17, 963 (1983).Google Scholar
27) Sutliff, J. A. and Rowe, R. G., “Rare Earth Oxide Dispersoid Stability and Microstructural Effects in Rapidly Solidified Ti3AI and Ti3AI-Nb” in Rapidly Solidified Alloys and Their Mechanical and Magnetic Propertis, ed. Giessen, B. C., Polk, D. R., and Taub, A. I., Proc. Mat. Res. Soc. Symposium, 58.Google Scholar
28) Rowe, R. G., Sutliff, J. A., and Koch, E. F., “Dispersoid Modification of Ti3AI-NbAlloys ibid.Google Scholar
29) Rowe, R. G., Sutliff, J. A., and Koch, E. F., “Comparison of Melt Spun and Consolidated Ti3AI-Nb Alloys With and Without a Dispersoid” in Rapid Solidification Technology for Titanium Alloys ed. Froes, F. H., Eylou, D., and Sastry, S. M. L., Proc. AIME Conf. New Orleans, LA, March 1986, TMS-AIME.Google Scholar
30) Aoki, K. and Izumi, O., Nippon Kinzoku Gakkaishi 43, 1190 (1979).Google Scholar
31) Liu, C. T., White, C. L., Koch, C. C., and Lee, E. H., Proc. High Temperature Materials Chemistry II, p. 32, Electrochemical Society, Inc. (1983).Google Scholar
32) Baker, I., Ichishita, F. S., Surprenant, V. A., and Schulson, E. M., Metallography 17, 299 (1984).Google Scholar
33) Baker, I., Ichishita, F. S., and Schulson, E. M., Mat. Res. Soc. Symp. Proc. 28, 395 (1984).Google Scholar
34) Baker, I., Horton, J. A., and Schulson, E. M., Metallography, 19, 63 (1986).Google Scholar
35) Huang, S. C., Taub, A. I., Chang, K. M., Briant, C. L., and Hall, E. L., Rapidly Quenched Metals (RQ5) vol. II, ed. Steele, S. and Warlimont, H., Elsevier Science Publishers (1985) p. 1407.Google Scholar
36) Lauf, R. J. and Walls, C. A., ECUT Quarterly Report, July 1-Sept. 30, 1985, ORNL p. 56.Google Scholar
37) Donnelly, S. G. and Koch, C. C., ECUT Quarterly Reports, Sept. 1, 1983 to Sept. 1, 1986, North Carolina State University.Google Scholar