Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T05:27:18.191Z Has data issue: false hasContentIssue false

Ab-Initio Modeling of the Resistance Switching Mechanism in RRAM Devices: Case Study of Hafnium Oxide (HfO2)

Published online by Cambridge University Press:  22 May 2012

Dan Duncan
Affiliation:
Stanford University Department of Electrical Engineering, 350 Serra Mall Stanford, CA, U.S.A.
Blanka Magyari-Kope
Affiliation:
Stanford University Department of Electrical Engineering, 350 Serra Mall Stanford, CA, U.S.A.
Yoshio Nishi
Affiliation:
Stanford University Department of Electrical Engineering, 350 Serra Mall Stanford, CA, U.S.A.
Get access

Abstract

The structures and energies of stoichiometric and oxygen-deficient monoclinic HfO2 were calculated using density functional theory. The electronic interactions in HfO2 were calculated using the LDA+U and GGA+U formalisms, where on-site Coulomb corrections were applied to the 5d electrons of hafnium (Ud) and the 2p electrons of oxygen (Up). Properties calculated using these techniques are compared to results obtained from LDA, GGA, hybrid functionals, and experiment. Ultimately, we show that LDA+Ud+Up and GGA+Ud+Up calculations of HfO2’s electronic and structural properties achieve a level of accuracy on par with much more computationally demanding hybrid functional techniques, such as PBE0 and HSE06.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhao, X. and Vanderbilt, D., Phys. Rev. B 65, 233106 (2002)Google Scholar
2. Wilk, G.D., Wallace, R. M., and Anthony, J.M., J. Appl. Phys. 87, 484 (2000)Google Scholar
3. Gusev, E.P., Cartier, E., Buchanan, D.A., Gribelyuk, M., Copel, M., Okorn-Schmidt, H, and D’Emic, C., Microelectron. Eng. 59, 341 (2001)Google Scholar
4. Waser, R., Dittmann, R., Staikov, G., and Szot, K., Adv. Mat. 21, 2632 (2009)Google Scholar
5. Chen, Y.S., Lee, H.Y., Chen, P.S., Gu, P.Y., Chen, C. W., Lin, W. P., Liu, W. H., Hsu, Y. Y., Sheu, S. S., Chiang, P. C., Chen, W. S., Chen, F. T., Lien, C. H., and Tsai, M.-J., IEDM Tech. Dig., 105 (2009)Google Scholar
6. Guan, X., Yu, S., Wong, H.-S. P., IEEE Trans. on Elect. Dev. 59, 4, 1172 (2012)Google Scholar
7. Yu, S., Guan, X., Wong, H.-S. P., IEEE Trans. on Elect. Dev. 59, 4, 1183 (2012)Google Scholar
8. Gao, B., Zhang, H.W., Yu, S., Sun, B., Liu, L.F., Liu, X.Y., Wang, Y., Han, R.Q., Kang, J.F., Yu, B., and Wang, Y. Y., Sym. on VLSI Tech., 30 (2009)Google Scholar
9. Kim, Y.M. and Lee, J. S., J. Appl. Phys. 104, 114115 (2008)Google Scholar
10. Lee, S., Kim, W.-G., Rhee, S.-W., and Yong, K., J. Electrochem. Soc. 155, 2, H92 (2008)Google Scholar
11. Chen, P. S., Lee, H.-Y., Wang, C.-C., Tsai, M.-J., and Liu, K.-C., Mater. Res. Soc. Symp. Proc. 997, (2007)Google Scholar
12. Briggs, B. D., Bishop, S. M., Leedy, K. D., Butcher, B., Moore, R. L., Novak, S. W., and Cady, N. C., Mat. Res. Soc. Symp. Proc. 1337, 49 (2011)Google Scholar
13. Vallee, C., Gonon, P., Jorel, C., El Kamel, F., Mougenot, M., and Jousseaume, V., Microelectron. Eng. 86, 1774 (2009)Google Scholar
14. Lee, H. Y., Chen, P. S., Wu, T. Y., Chen, Y. S., Wang, C. C., Tzeng, P. J., Lin, C. H., Chen, F., Lien, C. H., and Tsai, M.-J., Elect. Dev. Meet., 1 (2008)Google Scholar
15. Anisimov, V., Zaanen, J., and Andersen, O. K., Phys. Rev. B 44, 3 943 (1991)Google Scholar
16. Remediakis, I. N. and Kaxiras, E., Phys. Rev. B 59, 8 5536 (1998)Google Scholar
17. Zheng, J. X., Ceder, G., Maxisch, T., Chim, W. K., and Choi, W. K., Phys. Rev. B 75, 104112 (2007)Google Scholar
18. Lim, S.-G., Kriventsov, S., Jackson, T. N., Haeni, J. H., Schlom, D. G., Balbashov, A. M., Uecker, R., Reiche, P., Freeouf, J. L., and Lucovsky, G., J. Appl. Phys. 91, 4500 (2002)Google Scholar
19. Jiang, T.-T., Sun, Q.-Q., Li, Y., Guo, J.-J., Zhou, P., Ding, S.-J., and Zhang, D. W., J. Appl. Phys. D: Appl. Phys. 44, 185402 (2011)Google Scholar
20. Kresse, G. and Furthmuller, J., Phys. Rev. B 54, 16 170 (1996)Google Scholar
21. Kresse, G. and Furthmuller, J., Comput. Mater. Sci. 6, 15 (1996)Google Scholar
22. Blöchl, P. E., Phys. Rev. B 50, 17953 (1994)Google Scholar
23. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 12 5188 (1976)Google Scholar
24. Cococcioni, M. and Gironcoli, S., Phys. Rev. B 71, 035105 (2005)Google Scholar
25. Morgan, B. J. and Watson, G. W., Phys. Rev. B 80, 233102 (2009)Google Scholar
26. Nolan, M. and Watson, G. W., 125, 144701 (2006)Google Scholar
27. Lany, S. and Zunger, A., Phys. Rev. B 80, 085202 (2009)Google Scholar
28. Park, S.-G., Magyari-Kope, B., and Nishi, Y., Phys. Rev. B 82, 115109 (2010)Google Scholar
29. Korotin, M., Fujiwara, T., and Anisimov, V., Phys. Rev. B 62, 9 5696 (2000)Google Scholar
30. Clark, S. J., Lin, L., and Robertson, J., Microelectron. Eng. 88, 1464 (2011)Google Scholar
31. Broqvist, P. and Pasquarello, A., Appl. Phys. Lett. 89, 262904 (2006)Google Scholar
32. Jiang, H., Gomez-Abal, R. I., Rinke, P., and Scheffler, M., Phys. Rev. B 81, 085119 (2010)Google Scholar
33. Gavartin, J. L., Ramo, D. M., Shluger, A. L., Bersuker, G., and Lee, B. H., App. Phys. Lett. 89, 082908, (2006)Google Scholar
34. Foster, A. S., Gejo, F. L., Shluger, A. L., and Nieminen, R. M., Phys. Rev. B. 65, 174117 (2002)Google Scholar