Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T02:25:21.784Z Has data issue: false hasContentIssue false

In Situ Analysis of the Formation of thin TISI2, (>50 nm) Contacts in Submicron Cmos Structures during Rapid Thermal Annealing

Published online by Cambridge University Press:  15 February 2011

L. A. Clevenger
Affiliation:
larrycl@watson.ibm.com
C. Cabral Jr
Affiliation:
IBM. T.J. Watson Research Center, Yorktown Heights, NY 10598
R. A. Roy
Affiliation:
IBM. T.J. Watson Research Center, Yorktown Heights, NY 10598
C. Lavoie
Affiliation:
IBM. T.J. Watson Research Center, Yorktown Heights, NY 10598
R. Viswanathan
Affiliation:
IBM. T.J. Watson Research Center, Yorktown Heights, NY 10598
K. L. Saenger
Affiliation:
IBM. T.J. Watson Research Center, Yorktown Heights, NY 10598
J. Jordan-Sweet
Affiliation:
IBM. T.J. Watson Research Center, Yorktown Heights, NY 10598
G. Morales
Affiliation:
Boston University, Boston, MA 02215
K. L. Ludwig Jr
Affiliation:
IBM. T.J. Watson Research Center, Yorktown Heights, NY 10598
G. B. Stephenson
Affiliation:
Argonne National Laboratory, Argonne, Il 60439
Get access

Abstract

A detailed in situ study of silicide reactions during rapid thermal annealing of patterned structures was performed to determine the effects of linewidth (0.2 to 1.1 μm), dopants (arsenic, boron or phosphorus) and silicon substrate type (poly-Si or <100>-Si) on the C49 to C54-TiSi2 transformation. A synchrotron x-ray source and a high speed position sensitive detector were used to collect x-ray diffraction patterns of the reacting phases on a millisecond time scale, in situ, during annealing. We demonstrate that most patterned C49-TiSi2 structures (0.2 to 1.1 μm in width, 2 to 4 μm2 in area) will incompletely transform into C54-TiSi2 during rapid thermal annealing. The C49 to C54 transformation ends at about 900°C and further annealing to higher temperatures does not force the remaining C49 to transform into C54. We also observed that the C54 formation temperature increases as the linewidth of the silicide structure decreases. These results are explained by a low density of C54 nuclei in C49 which leads to a one-dimensional growth of C54 grains along the length of the patterned lines. Finally the incorporation of a Mo implant into either poly-Si or <100>-Si before the deposition of titanium is shown to increase the percentage of C49 that transforms into C54 and also to lower the C54 formation temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Maex, K., Mater. Sci. Eng., R 11, 53 (1993)Google Scholar
2. Mann, R.W., Clevenger, L.A., Agnello, P.D., and White, F.R., IBM J. Res. Develop., 39, 403 (1995)Google Scholar
3. Lasky, J.B., Nakos, J.S., Cain, O.J. and Giess, P.J., IEEE Trans. ELectron Devices, ED-38, 262 (1991)Google Scholar
4. Kittl, J.A., Prinslow, D.A. and Pas, M.F., Appl. Phys. Lett., 67, 2308 (1995)Google Scholar
5. Saenger, K.L., Cabral, C. Jr., Clevenger, L.A., Roy, R.A. and Wind, S., J. Appl. Phys., 78, 7040 (1995)Google Scholar
6. Clevenger, L.A., Mann, R.W., Miles, G.L., Harper, J.M.E., d'Heurle, F.M., Cabral, C. Jr., Saenger, K.L., Knotts, T.A. and Rakowski, D.W., VMIC, 626 (1995)Google Scholar
7. Mann, R. W., Miles, G.L., Knotts, T.A., Rakowski, D.W., Clevenger, L.A., Harper, J.M.E., d'Heurle, F.M., and Cabral, C., Jr., Appl. Phys. Lett., 67, 3729 (1995)Google Scholar
8. Roy, R.A., Clevenger, L.A., Cabral, C. Jr., Saenger, K.L., Brauer, S., Jordan-Sweet, J., Bucchignano, J., Stephenson, G.B., Morales, G. and Ludwig, K.F. Jr., Appl. Phys. Lett., 66, 1732 (1995)Google Scholar
9. Clevenger, L.A., Roy, R.A., Saenger, K.L., Brauer, S., Morales, G., Ludwig, K.F. Jr., Gifford, G., Bucchignano, J., Jordan-Sweet, J., Dehaven, P. and Stephenson, G.B., J. Mater. Res., 10, 2355 (1995)Google Scholar
10. Ma, Z., Allen, L.H. and Allman, D.D.J., J. Appl. Phys., 77, 4384 (1995)Google Scholar