Skip to main content
×
Home
    • Aa
    • Aa

The Diffusivity and Solubility of Oxygen in Silicon

  • J. C. Mikkelsen (a1)
Abstract
ABSTRACT

The diffusivity and solubility are two key parameters required for understanding and modeling the behavior of oxygen in silicon. This paper gives an up to date review of experimental determinations of these parameters, including some recent unpublished data. There is very good agreement within the long-range diffusivity results determined by secondary ion mass spectrometry (SIMS), charged particle analysis (CPA), and x-ray diffraction. The oxygen diffusivity is independent of [O], orientation, ambient, or crystal doping. The data also extrapolate well to the diffusivities obtained by the intrinsic oxygen atomic hop frequency at low temperature to give a combined expression of D = 0.13 exp(−2.53eV/kT) cm2s−1. There is somewhat poorer agreement on the solubility measurements, in part due to inconsistent calibration factors and the observation of a processing-dependent extrinsic oxygen solubility. The intrinsic solubility derived from SIMS, CPA, and infrared absorption is described by [O] = 9E22 exp (−1.52 eV/kT) cm−3. Finally, the above diffusivity and solubility parameters are compared to modeling of oxygen related phenomena in silicon, such as thermal donor and precipitate formation kinetics, and interaction with point defects during the relaxation of stress-aligned dichroism.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

(3). J. C. Mikkelsen Jr., Appl. Phys. Lett. 40, 336 (1982).

(4). J. C. Mikkelsen Jr., Appl. Phys. Lett. 41,871 (1982).

(5). D. Heck , R. E. Tressler , and J. Monkowski , J. Appl. Phys. 54, 5739 (1983).

(6). S. -T. Lee and D. Nichols , Appl. Phys. Lett. 47, 1001 (1985), and these Proceedings.

(8). J. Gass , H. H. Muller , H. Stussi , and S. Schweitzer , J. Appl. Phys. 51, 2030 (1980).

(9). Y. Itoh and T. Nozaki , Jap. J. Appl. Phys. 24, 279 (1985).

(10). H. Hrostowski and R. H. Kaiser , J. Phys. Chem. Solids 9, 214 (1959).

(11). A. R. Bean and R. C. Newman , J. Phys. Chem. Solids 32, 1211 (1971).

(13). M. Stavola , Appl. Phys. Lett. 44, 514 (1984).

(17). J. W. Corbett , R. S. McDonald , and G. D. Watkins , J. Phys. Chem. Solids 25, 873 (1964).

(18). M. Stavola , J. R. Patel , L. C. Kimerling , and P. E. Freeland , Appl. Phys. Lett. 42, 73(1983).

(19). R. C. Newman , A. S. Oates , and F. M. Livingston , J. Phys. C: Solid State Phys. 16, L667 (1983).

(20). A. S. Oates , M. J. Binns , R. C. Newman , J. H. Tucker , J. G. Wilkes , and A. Wilkinson , J. Phys. C: Solid State 17, 5685 (1984).

(21). R. C. Newman , A. K. Tipping , and J. H. Tucker , J. Phys. C: Solid State Phys. 18, L861 (1985).

(23). S. M. Hu , J. Appl. Phys. 52, 3974 (1981).

(24). P. Gaworzewski and G. Ritter , Phys. Stat. Sol. 67, 511 (1981).

(25). S. Isomae , S. Aoki , and K. Watanabe , J. Appl. Phys. 55,8117 (1984).

(26). W. Kaiser , H. L. Frisch , and H. Reiss , Phys. Rev. 112, 1546(1958).

(29). W. L. Hansen , S. J. Pearton , and E. E. Hailer , Appl. Phys. Lett. 44, 889 (1984).

(30). F. M. Livingston , S. Messoloras , R. C. Newman , B. C. Pike , R. J. Stewart , M. J. Binns , W. P. Brown , and J. G. Wilkes , J. Phys. C: Solid State Phys. 17 6253 (1984).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×