Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T10:32:38.862Z Has data issue: false hasContentIssue false

Doped Silicon Nanoparticles Synthesized by Nonthermal Plasma

Published online by Cambridge University Press:  01 February 2011

Xiaodong Pi
Affiliation:
xdpi@umn.edu, University of Minnesota, Department of Mechanical Engineering, 111 Church Street SE, Minneapolis, MN, 55108, United States
Rebecca Anthony
Affiliation:
ranthony@me.umn.edu, University of Minnesota, Department of Mechanical Engineering, 111 Church Street SE, Minneapolis, MN, 55455, United States
Stephen Campbell
Affiliation:
campb001@umn.edu, University of Minnesota, Department of Electrical Engineering and Computer Science, 200 Union Street, Minneapolis, MN, 55455, United States
Uwe Kortshagen
Affiliation:
uk@me.umn.edu, University of Minnesota, Department of Mechanical Engineering, 111 Church Street SE, Minneapolis, MN, 55455, United States
Get access

Abstract

Silicon nanoparticles (Si-NPs) < 6 nm have been doped with B and P in nonthermal plasma. The doping efficiency of B is smaller than that of P, consistent with the theoretically predicted larger formation energy of B than P. The effect of doping on the oxidation-induced changes in light emission from Si-NPs is different between B and P. It appears that P is at or near the surface of Si-NPs, and that B is well incorporated inside Si-NPs. Inks based on doped Si-NPs are produced by attaching alkyl ligands to the surface of Si-NPs and dispersing them in organic solvents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kanzawa, S. H. Y., Fujii, M. and Yamamoto, K. Solid State Commun. 100, 227 (1996).10.1016/0038-1098(96)00408-5Google Scholar
2. Fujii, M. Hayashi, S. and Yamamoto, K. J. Appl. Phys. 83, 7953 (1998).10.1063/1.367976Google Scholar
3. Fujii, S. H. M., Mimura, A. and Yamamoto, K. Appl. Phys. Lett. 75, 184 (1999).10.1063/1.124313Google Scholar
4. Mimura, A. Fujii, M. Hayashi, S. Kovalev, D. and Koch, F. Phys. Rev. B 62, 12625 (2000).10.1103/PhysRevB.62.12625Google Scholar
5. Fujii, M. Mimura, A. and Hayashi, S. Phys. Rev. Lett. 89, 206805 (2002).10.1103/PhysRevLett.89.206805Google Scholar
6. ̌Svřcek, V., Slaoui, A. Muller, J.-C., Rehspringer, J.-L., Honerlage, B. Tomasiunas, R. and Pelant, I. Physica E 16, 420 (2003).Google Scholar
7. Tchebotareva, A. L., Dooda, M. J. A. de, Biteen, J. S., Atwater, H. A., and Polman, A. J. Lumin. 114, 137 (2005).10.1016/j.jlumin.2004.12.014Google Scholar
8. Baldwin, R. K., Zou, J. Pettigrew, K. A., Yeagle, G. J., Britt, R. D., and Kauzlarich, S. M., Chem. Commun. 6, 658 (2006).10.1039/b513330kGoogle Scholar
9. Pi, X. D., Mangolini, L. Campbell, S. A., and Kortshagen, U. Phys. Rev. B 75, 085423 (2007).10.1103/PhysRevB.75.085423Google Scholar
10. Mangolini, L. Thimsen, E. and Kortshagen, U. Nano Lett. 5, 655 (2005).10.1021/nl050066yGoogle Scholar
11. Mangolini, L. and Kortshagen, U. Adv. Mater. 19, 2513 (2007).10.1002/adma.200700595Google Scholar
12. Pi, X. D., Liptak, R. W., Campbell, S. A., and Kortshagen, U. Appl. Phys. Lett. 91, 083112 (2007).10.1063/1.2773931Google Scholar
13. Jurbergs, D. Rogojina, E. Mangolini, L. and Kortshagen, U. Appl. Phys. Lett. 88, 233116 (2006).10.1063/1.2210788Google Scholar
14. Rai-Choudhury, P. and Salkovitz, F. I., J. Cryst. Growth 7, 361 (1970).Google Scholar
15. Cantele, G. Degoli, E. Luppi, E. Magri, R. N., D., Iadonisi, G. and Ossicini, S. Phys. Rev. B 72, 113303 (2005).Google Scholar
16. Ledoux, G. Guillois, O. Porterat, D. Reynaud, C. Huisken, F. Kohn, B. and Paillard, V. Phys. Rev. B 62, 15942 (2000).10.1103/PhysRevB.62.15942Google Scholar
17. Nutzel, J. F. and Abstreiter, G. Phys. Rev. B 53, 13551 (1996).10.1103/PhysRevB.53.13551Google Scholar
18. Oberbeck, L. Curson, N. J. Hallam, T. and Simmons, M. Y., Appl. Phys. Lett. 85, 1359 (2004).10.1063/1.1784881Google Scholar
19. Jorke, H. and Kibbel, H. Appl. Phys. Lett. 57, 1763 (1990).10.1063/1.104060Google Scholar
20. Hua, F. J., Swihart, M. T. & Ruckenstein, E. Langmuir 21, 6054 (2005)10.1021/la0509394Google Scholar