Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T18:04:12.940Z Has data issue: false hasContentIssue false

Doping Effect on Chloroindium Phthalocyanine (ClInPc)/C60 Solar Cells

Published online by Cambridge University Press:  23 March 2012

Weining Wang
Affiliation:
Physics Department, Seton Hall University, 400 South Orange Ave. South Orange, NJ 07079, U. S. A.
Neal Armstrong
Affiliation:
Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Blvd, Tucson, AZ 85721, U.S.A.
Get access

Abstract

For inorganic semiconductor solar cells, controlled doping is important because it can cause Fermi level shift of the inorganic semiconductor and achieve ohmic contact at the metal-semiconductor interface. In this paper we show that doping can also be used to shift Fermi level in organic semiconductors and cause changes in solar cell performance. We have made chloroindium phthalocyanine (ClInPc)/C60 heterojunction solar cells, where tetrafluoro-teracyano-quinodimethane (F4-TCNQ) is used to dope ClInPc layer. Ultraviolet photoemission spectroscopy (UPS) is used to investigate the ITO/ClInPc interfaces. The result shows that doping causes a Fermi level shift at the ITO/ClInPc interface as it does for inorganic semiconductors. As the doping increases, dark saturation current J0 of the solar cell increases, while open-circuit voltage Voc, short-circuit current Jsc and fill factor decreases. As a result, the efficiency of the solar cell decreases as doping increases. More UPS studies on ClInPc (doped with F4TCNQ)/C60 junction are needed to correlate the energy band diagram of the whole solar cell structure with the J-V characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Waldrop, J. R., Grant, R. W., Phys. Rev. Lett. 43, 1686 (1979).Google Scholar
2. Horn, K., Appl. Phys. A 51, 289 (1990).Google Scholar
3. Blochwitz, J., Fritz, T., Pfeiffer, M., Leo, K., Alloway, D. M., Lee, P. A., Armstrong, N. R., Organic Electronics 2, 97 (2001).Google Scholar
4. Pfeiffer, M, Beyer, A., Fritz, T., and Leo, K., Appl. Phys. Lett 73, 3202 (1998).Google Scholar
5. Gao, Weiying and Kahn, Antoine, Organic Electronics 3 (2002) 5363; Appl Phys Lett 79, 4040(2001).Google Scholar
6. Brumbach, M., Placencia, D., Armstrong, N.R., Journal of Physical Chemistry C. 112, 3142 (2008)Google Scholar
7. Schlaf, R., Parkinson, B. A., Lee, P. A., Nebesny, K. W., Armstrong, N. R., Journal of Physical Chemistry B. 103, 29842992 (1999).Google Scholar
8. Alloway, D.M., Hofmann, M., Smith, D. L., Gruhn, N. E., Graham, A. L., Colorado, R., Wysocki, V. H., Lee, T. R., Lee, P. A., Armstrong, N. R., Journal of Physical Chemistry B. 107, 11690 (2003).Google Scholar
9. Kahn, A., Zhao, W., Gao, W.Y., Vazquez, H., Flores, F., Chemical Physics. 325, 129 (2006).Google Scholar
10. Cahen, D., Kahn, A., Advanced Materials. 15, 271 (2003).Google Scholar
11. Hwang, J., Kim, E.G., Liu, J., Bredas, J.L., Duggal, A., Kahn, A., Journal of Physical Chemistry C. 111, 1378 (2007).Google Scholar
12. Ishii, H., Sugiyama, K., Ito, E., Seki, K., Advanced Materials. 11, 605 (1999).Google Scholar
13. Rand, B.P., Burk, D.P., Forrest, S.R., Physical Review B. 75, 11537 (2007).Google Scholar
14. Placencia, D., Wang, W., Shallcross, R.C., Nebesny, K.W., Brumbach, M., Armstrong, N.R., Advanced Functional Materials. 19, 1913 (2009).Google Scholar
15. Schlaf, R., Parkinson, B. A., Lee, P. A., Nebesny, K. W., Armstrong, N. R., Journal of Physical Chemistry B. 103, 2984 (1999).Google Scholar
16. Zahn, D.R.T., Gavrila, G.N., Gorgoi, M., Chemical Physics. 325, 99 (2006).Google Scholar
17. Weaver, J.H., Martins, J.L., Komeda, T., Chen, Y., Ohno, T.R., Kroll, G.H., Troullier, N., Haufler, R.E., Smalley, R.E., Physical Review Letters. 66, 1741 (1991).Google Scholar
18. Kong, X.H., Wang, M., Lei, S. B., Yang, Y. L., Wang, C., Journal of Materials Chemistry. 16, 4265 (2006).Google Scholar
19. Chau, L.K., England, C.D., Chen, S.Y., Armstrong, N.R., Journal of Physical Chemistry. 97, 2699 (1993).Google Scholar
20. Wang, Weining, Plancencia, Diogenes, Armstrong, Neal R., Organic Electronics 12, 383 (2010).Google Scholar