Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T01:36:05.569Z Has data issue: false hasContentIssue false

Dual Functionalized Janus Nanocomposites for Targeted pH-Responsive Drug Delivery

Published online by Cambridge University Press:  17 February 2014

Feng Wang
Affiliation:
The Materials Science and Engineering Program, University of Cincinnati, Cincinnati, OH 45221(USA),
Giovanni Pauletti
Affiliation:
James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267 (USA),
Yilong Wang
Affiliation:
The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, 200092, China.
Donglu Shi*
Affiliation:
The Materials Science and Engineering Program, University of Cincinnati, Cincinnati, OH 45221(USA),
Get access

Abstract

A superparamagnetic Janus nanocomposite (SJNC) of polystyrene/Fe3O4@SiO2 was designed and developed with dual surface bearing functional groups for medical diagnosis and treatment. Folic acid (FA) and doxorubicin (DOX) were conjugated stepwise to the surfaces. SJNCs were found to enable simultaneous cell-targeted drug delivery via pH-responsive release mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gindy, M. E. and Prud'homme, R. K., “Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy,” Expert Opin Drug Del, 6[8] 865–78 (2009).CrossRefGoogle ScholarPubMed
Lee, C. H., Cheng, S. H., Huang, I. P., Souris, J. S., Yang, C. S., Mou, C. Y., andLo, L. W., “Intracellular pH-Responsive Mesoporous Silica Nanoparticles for the Controlled Release of Anticancer Chemotherapeutics,” Angew Chem Int Edit, 49[44] 8214–19 (2010).CrossRefGoogle ScholarPubMed
Kievit, F. M., Veiseh, O., Bhattarai, N., Fang, C., Gunn, J. W., Lee, D., Ellenbogen, R. G., Olson, J. M., andZhang, M. Q., “PEI-PEG-Chitosan-Copolymer-Coated Iron Oxide Nanoparticles for Safe Gene Delivery: Synthesis, Complexation, and Transfection,” Adv Funct Mater, 19[14] 2244–51 (2009).CrossRefGoogle ScholarPubMed
Liu, G., Xie, J., Zhang, F., Wang, Z. Y., Luo, K., Zhu, L., Quan, Q. M., Niu, G., Lee, S., Ai, H., andChen, X. Y., “N-Alkyl-PEI-Functionalized Iron Oxide Nanoclusters for Efficient siRNA Delivery,” Small, 7[19] 2742–49 (2011).CrossRefGoogle ScholarPubMed
Ojea-Jimenez, I., Garcia-Fernandez, L., Lorenzo, J., andPuntes, V. F., “Facile Preparation of Cationic Gold Nanoparticle-Bioconjugates for Cell Penetration and Nuclear Targeting,” ACS Nano, 6[9] 7692–702 (2012).CrossRefGoogle ScholarPubMed
Cho, H. S., Dong, Z., Pauletti, G. M., Zhang, J., Xu, H., Gu, H., Wang, L., Ewing, R. C., Huth, C., Wang, F., andShi, D., “Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment,” ACS Nano, 4[9] 5398–404 (2010).CrossRefGoogle ScholarPubMed
Quach, A. D., Crivat, G., Tarr, M. A., andRosenzweig, Z., “Gold Nanoparticle-Quantum Dot-Polystyrene Microspheres as Fluorescence Resonance Energy Transfer Probes for Bioassays,” J Am Chem Soc, 133[7] 2028-30 (2011).CrossRefGoogle ScholarPubMed
Lattuada, M. and Hatton, T. A., “Synthesis, properties and applications of Janus nanoparticles,” Nano Today, 6[3] 286308 (2011).Google Scholar
Serra, C. A. and Chang, Z. Q., “Microfluidic-assisted synthesis of polymer particles,” Chem Eng Technol, 31[8] 1099–115 (2008).CrossRefGoogle Scholar
Dendukuri, D., Pregibon, D. C., Collins, J., Hatton, T. A., andDoyle, P. S., “Continuous-flow lithography for high-throughput microparticle synthesis,” Nature Materials, 5[5] 365–69 (2006).CrossRefGoogle ScholarPubMed
Dendukuri, D. and Doyle, P. S., “The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics,” Adv Mater, 21[41] 4071–86 (2009).CrossRefGoogle Scholar
Hu, J., Zhou, S. X., Sun, Y. Y., Fang, X. S., andWu, L. M., “Fabrication, properties and applications of Janus particles,” Chem Soc Rev, 41[11] 4356–78 (2012).CrossRefGoogle ScholarPubMed
Hu, S. H. and Gao, X. H., “Nanocomposites with Spatially Separated Functionalities for Combined Imaging and Magnetolytic Therapy,” J Am Chem Soc, 132[21] 7234-+ (2010).CrossRefGoogle ScholarPubMed
Roh, K. H., Martin, D. C., andLahann, J., “Biphasic Janus particles with nanoscale anisotropy,” Nat Mater, 4[10] 759–63 (2005).CrossRefGoogle ScholarPubMed
Roh, K. H., Yoshida, M., andLahann, J., “Compartmentalized, multiphasic nanocolloids with potential applications in drug delivery and biomedical imaging,” Materialwiss Werkst, 38[12] 1008–11 (2007).CrossRefGoogle Scholar
Xu, C. J., Wang, B. D., andSun, S. H., “Dumbbell-like Au-Fe3O4 Nanoparticles for Target-Specific Platin Delivery,” J Am Chem Soc, 131[12] 4216-+ (2009).CrossRefGoogle ScholarPubMed
Wang, Y., Xu, H., Qiang, W., Gu, H., andShi, D., “Asymmetric Composite Nanoparticles with Anisotropic Surface Functionalities,” Journal of Nanomaterials, 2009 (2009).Google Scholar
Wang, Y. L., Xu, H., Ma, Y. S., Guo, F. F., Wang, F., andShi, D. L., “Facile One-Pot Synthesis and Morphological Control of Asymmetric Superparamagnetic Composite Nanoparticles,” Langmuir, 27[11] 7207–12 (2011).CrossRefGoogle ScholarPubMed
Lee, R. J. and Low, P. S., “Folate as a targeting device for proteins utilizing folate receptor-mediated endocytosis,” Methods Mol Med, 25 6976 (2000).Google ScholarPubMed
Stella, B., Arpicco, S., Peracchia, M. T., Desmaele, D., Hoebeke, J., Renoir, M., D'Angelo, J., Cattel, L., andCouvreur, P., “Design of folic acid-conjugated nanoparticles for drug targeting,” J Pharm Sci-Us, 89[11] 1452–64 (2000).Google ScholarPubMed
Leamon, C. P. and Low, P. S., “Delivery of Macromolecules into Living Cells - a Method That Exploits Folate Receptor Endocytosis,” P Natl Acad Sci USA, 88[13] 5572–76 (1991).CrossRefGoogle Scholar
Buist, M. R., Molthoff, C. F. M., Kenemans, P., andMeijer, C. J. L. M., “Distribution of Ov-Tl-3 and Mov18 in Normal and Malignant Ovarian Tissue,” J Clin Pathol, 48[7] 631–36 (1995).CrossRefGoogle ScholarPubMed
Salazar, M. D. and Ratnam, M., “The folate receptor: What does it promise in tissue-targeted therapeutics?,” Cancer Metast Rev, 26[1] 141–52 (2007).CrossRefGoogle ScholarPubMed
Fei, X. N., Liu, Y., andLi, C., “Folate Conjugated Chitosan Grafted Thiazole Orange Derivative with High Targeting for Early Breast Cancer Cells Diagnosis,” J Fluoresc, 22[6] 1555–61 (2012).CrossRefGoogle ScholarPubMed
Mahajan, S., Koul, V., Choudhary, V., Shishodia, G., andBharti, A. C., “Preparation and in vitro evaluation of folate-receptor-targeted SPION-polymer micelle hybrids for MRI contrast enhancement in cancer imaging,” Nanotechnology, 24[1] 015603 (2013).CrossRefGoogle ScholarPubMed
Hou, J., Zhang, Q., Li, X., Tang, Y., Cao, M. R., Bai, F., Shi, Q., Yang, C. H., Kong, D. L., andBai, G., “Synthesis of novel folate conjugated fluorescent nanoparticles for tumor imaging,” J Biomed Mater Res A, 99A[4] 684–89 (2011).CrossRefGoogle Scholar
Momparler, R. L., Karon, M., Siegel, S. E., andAvila, F., “Effect of Adriamycin on DNA, Rna, and Protein-Synthesis in Cell-Free Systems and Intact-Cells,” Cancer Res, 36[8] 2891–95 (1976).Google ScholarPubMed
Fornari, F. A., Randolph, J. K., Yalowich, J. C., Ritke, M. K., andGewirtz, D. A., “Interference by Doxorubicin with DNA Unwinding in Mcf-7 Breast-Tumor Cells,” Mol Pharmacol, 45[4] 649–56 (1994).Google ScholarPubMed
Lee, J. E., Lee, D. J., Lee, N., Kim, B. H., Choi, S. H., andHyeon, T., “Multifunctional mesoporous silica nanocomposite nanoparticles for pH controlled drug release and dual modal imaging,” J Mater Chem, 21[42] 16869–72 (2011).CrossRefGoogle Scholar
Wuang, S. C., Neoh, K. G., Kang, E. T., Leckband, D. E., andPack, D. W., “Acid-Sensitive Magnetic Nanoparticles as Potential Drug Depots,” Aiche J, 57[6] 1638–45 (2011).Google ScholarPubMed
Chang, Y. L., Meng, X. L., Zhao, Y. L., Li, K., Zhao, B., Zhu, M., Li, Y. P., Chen, X. S., andWang, J. Y., “Novel water-soluble and pH-responsive anticancer drug nanocarriers: Doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs),” J Colloid Interf Sci, 363[1] 403–09 (2011).CrossRefGoogle Scholar
Wang, F., Pauletti, G. M., Wang, J., Zhang, J., Ewing, R. C., Wang, Y., andShi, D., “Dual surface-functionalized Janus nanocomposites of polystyrene/Fe(3)O(4)@SiO(2) for simultaneous tumor cell targeting and stimulus-induced drug release,” Adv Mater, 25[25] 3485–9 (2013).Google Scholar