Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T04:23:29.019Z Has data issue: false hasContentIssue false

Dynamical X-Ray Diffraction Studies of Interfacial Strain in Superlattices Grown by Molecular Beam Epitaxy

Published online by Cambridge University Press:  26 February 2011

J. M. Vandenberg
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey
S. N. G. Chu
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey
R. A. Hamm
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey
M. B. Panish
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey
D. Ritter
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey
A. T. Mancrander
Affiliation:
Argonne National Laboratory, Argonne, EL
Get access

Abstract

Dynamical X-ray diffraction studies have been carried out for lattice-matched InGaAs/InP superlattices grown by modified molecular beam epitaxy (MBE) techniques. The (400) X-ray satellite pattern, which is predominantly affected by the strain modulation, was analyzed. The strain and thickness of the actual layers including the presence of strained interfacial regions were determined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vandenberg, J. M., Panish, M. B., Temkin, H., and Hamm, R. A., Appl. Phys. Lett. 53, 1920 (1988).CrossRefGoogle Scholar
2. Lyons, M. H., Scott, E. G., and Halliwell, M. A. G., in Microscopy of Semiconducting Materials, Institute of Physics Conference Series 100, Oxford, 1989, edited by Cullis, A. G. and Hutchinson, J. L. (IOP, Bristol, 1989), Sec. 6, p. 473.Google Scholar
3. Chang, J. C. P., Chin, T. P., Kavanagh, K. L., and Tu, C. W., Appl. Phys. Lett. 55, 1530 (1991).CrossRefGoogle Scholar
4. Vandenberg, J. M., Macrander, A. T., Hamm, R. A. and Panish, M. B., Phys. Rev. B44, 3991 (1991).CrossRefGoogle Scholar
5. Macrander, A. T., Minami, E. R., and Berreman, D. W., J. Appl. Phys. 60, 1364 (1986).CrossRefGoogle Scholar
6. Bartels, W. J., in Thin-Film Growth Techniques for Low-Dimensional Structures, Vol. 163 of NATO Advanced Study Institute, Series B: Physics, edited by Farrow, R. F. C. and Dobson, P. J. (Plenum, New York, 1987).Google Scholar
7. Vandenberg, J. M., Gershoni, D., Hamm, R. A., Panish, M. P., and Temkin, H., J. Appl. Phys. 66, 3635 (1989).CrossRefGoogle Scholar
8. Fewster, P. F., Phillips J. Res. 41, 268 (1986).Google Scholar
9. Ritter, D., Hamm, R. A., Panish, M. B., Vandenberg, J. M., Gershoni, D., Gunapala, S. D., and Levine, B. F., Appl. Phys. Lett. 59, 552 (1991).CrossRefGoogle Scholar