Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T00:04:22.709Z Has data issue: false hasContentIssue false

Effects of Elastic Anisotropy on the Anomalous Yield Behavior of Cubic Ordered Alloys*

Published online by Cambridge University Press:  28 February 2011

M. H. Yoo*
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6117
Get access

Abstract

The positive temperature dependence of yield stress in certain L12 and B2 alloys, e.g. Ni3Al and β′-CuZn, is analyzed on the basis of the nature of dislocation dissociations predicted by anisotropic elasticity theory. In the case of Ni3Al, the torque due to the tangential component of the elastic interaction between two superpartials is a major driving force for either the cross-slip pinning model or the force couplet model. The corresponding torque term is relatively unimportant in the B2 structure. The core transformation of individual superpartials may be important for the anomalous increase of yield stress in β′-CuZn.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract DE-ACO5-840R21400 with Martin Marietta Energy Systems, Inc.

References

REFERENCES

1. Vitek, V., Dislocations and Properties of Real Materials, (The Institute of Metals, London, 1985), p. 30.Google Scholar
2. Pope, D. P. and Ezz, S. S., Int. Metal. Rev. 29, 136 (1984).CrossRefGoogle Scholar
3. Yamaguchi, M. and Umakoshi, Y. in The Structure and Properties of Crystal Defects, edited by Paidar, V. and Lejcek, L., (Elsevier Science Publ., New York, 1984), p. 131.Google Scholar
4. Tien, J. K., in High Temperature Ordered Intermetallic Alloys (in this issue).Google Scholar
5. Paidar, V., Pope, D. P., and Vitek, V., Acta Metall. 32, 435 (1984).Google Scholar
6. Takeuchi, S. and Kuramoto, E., Acta Metall. 21, 415 (1973).Google Scholar
7. Yoo, M. H., Scr. Metal. 20, 915 (1986).Google Scholar
8. Douin, J., Veyssiere, P., and Beauchamp, P., Philos. Mag. 54, 375 (1986).CrossRefGoogle Scholar
9. Horton, J. A. and Liu, C. T., Acta Metall. 12, 2191 (1985).CrossRefGoogle Scholar
10. Yoo, M. H., Acta Metall. (in press).Google Scholar
11. Yoo, M. H., to be published.Google Scholar
12. Head, A. K., Phys. Status Solidi 6, 461 (1964).Google Scholar
13. Stroh, A. N., Philos. Mag. 3, 625 (1958).Google Scholar
14. Hirth, J. P. and Lothe, J., Phys. Status Solidi 15, 487 (1966).Google Scholar
15. Veyssiere, P., Philos. Mag. A50, 189 (1984).Google Scholar
16. Kikuchi, R., J. Phys. hem. Solids 27, 1305 (1966).Google Scholar
17. Popov, L. E., Kozlov, E. V., and Golosov, N. S., Phys. Status Solidi 13, 569 (1966).Google Scholar
18. Yamaguchi, M. in Mechanical Properties of BCC Metals, edited by Meshii, M. (TMS-AIME, Warrendale, PA, 1981), p. 31.Google Scholar
19. Kear, B. H. and Wilsdorf, H. G. F., Trans. TMS-AIME 224, 382 (1962).Google Scholar
20. Ezz, S. S., Pope, D. P., and Paidar, V., Acta Metall. 30, 921 (1982).Google Scholar
21. Umakoshi, Y., Yamaguchi, M., Namba, Y., and Murakami, K., Acta Metall. 24, 89 (1976).Google Scholar
22. Flinn, P. A., Trans. TMS-AIME 218, 145 (1960).Google Scholar
23. Chen, S. P., Voter, A. F., and Srolovitz, D. J., Scr. Metall. 20, 1389 (1986).CrossRefGoogle Scholar
24. Foiles, S. M. and Daw, M. S., J. Mater. Res. (in press).Google Scholar
25. Inden, G., Bruns, S., and Ackermann, H., Philos. Mag. 53, 87 (1986).CrossRefGoogle Scholar
26. Suzuki, K., Ichihara, M., and Takeuchi, S., Acta Metall. 27, 193 (1979).Google Scholar
27. Yoo, M. H. and Loh, B. T. M., J. Appl. Phys. 43, 1373 (1972).Google Scholar