Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T16:36:51.350Z Has data issue: false hasContentIssue false

Electrical Characterization of Defect States in Local Conductivity Domains in ZnO:N,As Layers

Published online by Cambridge University Press:  01 February 2011

Andre Krtschil
Affiliation:
andre.krtschil@physik.uni-magdeburg.de, Otto-von-Guericke-University Magdeburg, Institute of Experimental Physics, PO Box 4120, Magdeburg, 39016, Germany
Armin Dadgar
Affiliation:
armin.dadgar@physik.uni-magdeburg.de, Otto-von-Guericke-University Magdeburg, Institute of Experimental Physics, PO Box 4120, Magdeburg, 39016, Germany
Annette Diez
Affiliation:
annette.diez@physik.uni-magdeburg.de, Otto-von-Guericke-University Magdeburg, Institute of Experimental Physics, PO Box 4120, Magdeburg, 39016, Germany
Alois Krost
Affiliation:
alois.krost@physik.uni-magdeburg.de, Otto-von-Guericke-University Magdeburg, Institute of Experimental Physics, PO Box 4120, Magdeburg, 39016, Germany
Get access

Abstract

P- and n-type conductivity domains in dual-doped ZnO:As+N layers grown by metal organic vapor phase epitaxy on GaN/sapphire templates were electrically microcharacterized by scanning capacitance (SCM) and scanning surface potential microscopy (SSPM) techniques with respect to their defect states. The p-type domains were found to be dominated by two acceptors with thermal activation energies of about 80 and 270 meV as observed by transient SCM scans at different temperatures. Optically excited SSPM scans revealed defect-to-band-transitions at 400, 459, and 505 nm omnipresent in both domain types as well as a shallower transition at 377 nm exclusively in the p-type regions. According to the similar energy levels the optical transitions at 377 and 400 nm are assigned to acceptor states, whereby the 80meV-acceptor is probably responsible for the conversion from n- to p-type in the domains.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Butkhuzi, T.V., Bureyev, A. V., Georgobiani, A. N., Kekelidze, N. P. and Khulordava, T. G. et al., J. Cryst. Growth 117, 366 (1992)Google Scholar
[2] Meyer, B.K., Volbers, N., Zeuner, A., Lautenschläger, S., Sann, J., Hoffmann, A., Haboeck, U.; Materials Research Society Symposium Proceedings 891, 491 (2006)Google Scholar
[3] Park, C.H., Zhang, S.B., Wei, S.-H., Phys. Rev. B 66, 73202 (2002)Google Scholar
[4] Miao, Y., Ye, Z., Xu, W., Chen, F., Zhou, X., Zhao, B., Zhu, L., J. Lu; Appl. Surf. Sci 252 (22), 7953 (2006)Google Scholar
[5] Yamamoto, T., Katayama-Yoshida, H.: J. Cryst. Growth 214–215, 552 (2000)Google Scholar
[6] Wang, L.G. and Zunger, A.; Phys. Rev. Letters 90 (25), 254601 (2003)Google Scholar
[7] Krtschil, A., Dadgar, A., Oleynik, N., Bläsing, J., Diez, A., Hempel, T., Christen, J., and Krost, A.; Appl. Phys. Lett. 87, 262105 (2005)Google Scholar
[8] Krtschil, A., Look, D.C., Fang, Z.-Q., Dadgar, A., Diez, A. and Krost, A.; Physica B 376–377, 703 (2006)Google Scholar
[9] Krost, A., Christen, J., Oleynik, N., Dadgar, A., Deiter, S., Bläsing, J., Krtschil, A., Forster, D., Bertram, F., and Diez, A., Appl. Phys. Lett. 85, 1496 (2004)Google Scholar
[10] Krtschil, A., Dadgar, A., and Krost, A.; in preparation for submission in J. Appl. Phys.Google Scholar
[11] Krtschil, A., Dadgar, A., and Krost, A.; Appl. Phys. Lett. 82 (14), 2263 (2003)Google Scholar