Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T07:52:28.691Z Has data issue: false hasContentIssue false

Electrical Properties of Iron-Related Defects in Cz- And Fz-Grown N-Type Silicon

Published online by Cambridge University Press:  10 February 2011

Hajime Kitagawa
Affiliation:
Department of Electronics, Fukuoka Institute of Technology, Wajiro-Higashi, Higashi-ku, Fukuoka 811-0214, Japan, kitagawa@emat.fit.ac.jp
Shuji Tanaka
Affiliation:
Department of Electronics, Fukuoka Institute of Technology, Wajiro-Higashi, Higashi-ku, Fukuoka 811-0214, Japan, kitagawa@emat.fit.ac.jp
Get access

Abstract

Electrical properties of iron-related defects (IRD) introduced in n-type floating zoned (FZ) and Czochralski (CZ)-grown silicon are studied by deep level transient spectroscopy and Hall effect. Electrically active IRD have been observed for the first time in n-type CZ silicon. Enthalpy and entropy factors of electron emission rate of IRD are equivalent between those observed in CZ and FZ silicon. In-diffusion process at 1160° and isothermal annealing process at 150° also indicate the identical nature of IRD between CZ and FZ silicon, which can be understood in terms of the consecutive progress of iron-related complex-formation reactions including interstitial iron atoms (Fei) in the silicon crystal. The IRD is independent of oxygen and phosphorus atoms. Only a small fraction of Fei forms electrically ionizable complexes

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kimerling, L. C., Benton, J. L. and Rubin, J. J.: Defects and Radiation Effect in Semiconductors 1980 (Inst. Phys. Conf. Ser. 59, London, 1981) p.217.Google Scholar
2. Nakashima, K. and Chijiwa, M.: Jpn. J. Appl. Phys. 25, 234 (1986).Google Scholar
3. Kakishita, K., Kawakami, K., Suzuki, S., Ohta, E. and Sakata, M.: J. Appl. Phys. 65, 3923 (1989).Google Scholar
4. Kitagawa, H., Tanaka, S. and Kimerling, L. C.: J. Electr. Mater. 21, 863 (1992).Google Scholar
5. Kitagawa, H., Tanaka, S. and Ni, B.: Jpn. J. Appl. Phys. 32, L1645 (1993).Google Scholar
6. Tanaka, S. and Kitagawa, H.: Jpn. J. Appl. Phys. 34, L721 (1995).Google Scholar
7. Kitagawa, H. and Tanaka, S.: Mat. Res. Soc. Symp. Proc. 378, 983 (1995).Google Scholar
8. Tanaka, S. and Kitagawa, H.: Jpn. J. Appl. Phys. 37, L4 (1998).Google Scholar
9. Kitagawa, H. and Nakashima, H.: Jpn. J. Appl. Phys. 28, 305 (1989).Google Scholar
10. Kitagawa, H., Tanaka, S., Nakashima, H. and Yoshida, M.: J. Electrn. Mater. 20, 441 (1991).Google Scholar
11. Weber, E. and Riotte, H. G.: J. Appl. Phys. 51, 1484 (1980).Google Scholar
12. Weber, E. R.: Appl. Phys. A 30, 1 (1983)Google Scholar
13. van Kooten, J. J., Sieverts, E. G. and Ammerlaan, C. A. J.: Solid-State Commun. 64, 1489 (1987).Google Scholar
14. Istratov, A. A. and Weber, E. R.: Appl. Phys. A 66, 123 (1998).Google Scholar
15. Damask, A. C. and Dienes, G. J.: Point Defects in Metals (Gordon and Breach, New York, 1963) p. 81.Google Scholar
16. Nakashima, H., Isobe, T., Yamamoto, Y. and Hashimoto, K.: Jpn. J. Appl. Phys. 27, 1542 (1988).Google Scholar