Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T22:55:10.017Z Has data issue: false hasContentIssue false

Electrical Rectification by a Monolayer of Hexadecylquinolinium Tricyanoquinodimethanide Sandwiched Between Gold Electrodes

Published online by Cambridge University Press:  21 March 2011

Robert M. Metzger*
Affiliation:
Laboratory for Molecular Electronics, Chemistry Department, The University of Alabama Tuscaloosa, AL 35487-0336, USA, rmetzger@bama.ua.edu
Get access

Abstract

Unimolecular rectification, previously reported between oxide-bearing electrodes, was detected between oxide-free Au electrodes for a Langmuir-Blodgett monolayer of the zwitterionic D+∼-A- molecule hexadecylquinolinium tricyanoquinodimethanide, C16H33Q-3CNQ. The top gold electrode was deposited from a Au vapor pre-cooled by multiple collisions with Ar atoms. The maximum rectification ratio is 27.5 at 2.2 Volts (the average rectification ratio is 7.55). The currents are as large as 9.04 × 104 electrons molecule-1 s-1. The result reinforces previous work with oxide-bearing Al electrodes, but the currents with Au electrodes are larger by three to five orders of magnitude.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ashwell, G.J., Sambles, J.R., Martin, A.S., Parker, W.G., and Szablewski, M., J. Chem. Soc. Chem. Comm. 1374 (1990).Google Scholar
2. Martin, A.S., Sambles, J.R. and Ashwell, G.J., Phys. Rev. Lett. 70: 218 (1993).Google Scholar
3. Metzger, R.M., Chen, B., Höpfner, U., Lakshmikantham, M.V., Vuillaume, D., Kawai, T., Wu, X., Tachibana, H., Hughes, T.V., Sakurai, H., Baldwin, J.W., Hosch, C., Cava, M.P., Brehmer, L., and JAshwell, G., J. Am. Chem. Soc. 119: 10455 (1997).Google Scholar
4. Vuillaume, D., Chen, B., and Metzger, R.M., Langmuir 15: 4011 (1999).Google Scholar
5. Chen, B. and Metzger, R.M., J. Phys. Chem. B103: 4447 (1999).Google Scholar
6. Baldwin, J.W., Chen, B., Street, S.C., Konovalov, V.V., Sakurai, H., Hughes, T.V., Simpson, C.S., Lakshmikantham, M.V., Cava, M.P., Kispert, L.D., and Metzger, R.M., J. Phys. Chem. B103: 4269 (1999).Google Scholar
7. Metzger, R.M., Adv. Mater. Optics & Electronics 8: 229 (1998).Google Scholar
8. Metzger, R.M. and Cava, M. P., Ann. N. Y. Acad. Sci. 852: 95 (1998).Google Scholar
9. Metzger, R.M., Mol. Cryst. Liq. Cryst. 337: 37 (1999).Google Scholar
10. Metzger, R.M., Synth. Metals 109: 23 (2000).Google Scholar
11. Metzger, R.M., Chen, B., Vuillaume, D., Lakshmikantham, M.V., Höpfner, U., Kawai, T., Baldwin, J.W., Wu, X., Tachibana, H., and Cava, M.P., Thin Solid Films 327–329: 326 (1998).Google Scholar
12. Metzger, R.M., Chen, B., Vuillaume, D., Höpfner, U., Baldwin, J.W., Kawai, T., Tachibana, H., Sakurai, H., Lakshmikantham, M.V., and Cava, M.P., MRS Proc. 488: 335 (1998).Google Scholar
13. Metzger, R.M., J. Mater. Chem. 9: 2027 (1999).Google Scholar
14. Metzger, R.M., Acc. Chem. Res. 32: 950 (1999).Google Scholar
15. Metzger, R.M., J. Mater. Chem. 10: 55 (2000).Google Scholar
16. Xu, T., Peterson, I.R., Lakshmikantham, M.V., and Metzger, R.M., Angew.Chem. Intl. Ed. Engl, accepted and in press.Google Scholar
17. Metzger, R.M., Xu, T., and Peterson, I.R., submitted to J. Phys. Chem. Google Scholar
18. Peterson, I.R., Vuillaume, D., and Metzger, R.M., J. Phys. Chem., accepted and in press.Google Scholar
19. Metzger, R.M. and Chen, B., U.S. Patent 6,169,291 (2 Jan 2001).Google Scholar
20. Okazaki, N. and Sambles, J.R., Extended Abstracts, International Symposium on Organic Molecular Electronics, Nagoya, Japan, 18-19 May 2000, pp.6667.Google Scholar
21. Metzger, R.M., (MRS Boston 99 Paper H12.2) Mater. Res. Soc. Symp. Proc., in press.Google Scholar
22. Aviram, A. and Ratner, M.A., Chem. Phys. Lett. 29: 277 (1974).Google Scholar