Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T16:18:30.391Z Has data issue: false hasContentIssue false

Electrical Resistivity and Magnetoresistance of the δ-FeZn10 Complex Intermetallic Phase

Published online by Cambridge University Press:  01 February 2013

P. Koželj
Affiliation:
J. Stefan Institute, University of Ljubljana, Jamova 39, SI-1000 Ljubljana, Slovenia.
S. Jazbec
Affiliation:
J. Stefan Institute, University of Ljubljana, Jamova 39, SI-1000 Ljubljana, Slovenia.
J. Dolinšek
Affiliation:
J. Stefan Institute, University of Ljubljana, Jamova 39, SI-1000 Ljubljana, Slovenia.
Get access

Abstract

The δ-FeZn10 phase possesses high structural complexity typical of complex metallic alloys: a giant unit cell comprising 556 atoms, polyhedral atomic order with icosahedrally-coordinated environments, fractionally occupied lattice sites and statistically disordered atomic clusters that introduce intrinsic disorder into the structure. The electrical resistivity is large and exhibits a maximum at about 220 K. The magnetoresistance is sizeable, amounting to 1.5 % at 2 K in 9 T field. The temperature–dependent resistivity is discussed within the frame of the theory of slow charge carriers, applicable to metallic systems with weak dispersion of the electronic bands, where the electron motion changes from ballistic to diffusive upon heating. A comparison to the theory of weak localization is also made.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Urban, K. and Feuerbacher, M., J. Non-Cryst. Solids 334335, 143 (2004).10.1016/j.jnoncrysol.2003.11.029CrossRefGoogle Scholar
Janot, C., Quasicrystals, 2 nd ed. (Clarendon, Oxford, 1994) p. 1.Google ScholarPubMed
Belin, C. H. E. and Belin, R. C. H., J. Solid State Chem. 151, 85 (2000).10.1006/jssc.2000.8626CrossRefGoogle Scholar
Jazbec, S., Koželj, P., Vrtnik, S., Jagličić, Z., Popčević, P., Ivkov, J., Stanić, D., Smontara, A., Feuerbacher, M., and Dolinšek, J., Phys. Rev. B 86, 064205 (2012).10.1103/PhysRevB.86.064205CrossRefGoogle Scholar
Brandon, J. K., Brizard, R. Y., Chieh, P. C., McMillan, R. K., and Pearson, W. B., Acta Crystallogr. B 30, 1412 (1974).10.1107/S0567740874004997CrossRefGoogle Scholar
Kubaschewski, , Phase Diagram of Binary Iron Alloys (ASM International, Materials Park, OH, 1993) p. 459.Google Scholar
Trambly de Laissardière, G., Julien, J.-P., and Mayou, D., Phys. Rev. Lett. 97, 026601 (2006).10.1103/PhysRevLett.97.026601CrossRefGoogle Scholar
Fukuyama, H. and Hoshino, K., J. Phys. Soc. Jpn. 50, 2131 (1981).10.1143/JPSJ.50.2131CrossRefGoogle Scholar
Dolinšek, J., Jeglič, P., Komelj, M., Vrtnik, S., Smontara, A., Smiljanić, I., Bilušić, A., Ivkov, J., Stanić, D., Zijlstra, E. S., Bauer, B., and Gille, P., Phys. Rev. B 76, 174207 (2007).10.1103/PhysRevB.76.174207CrossRefGoogle Scholar
Lee, P. A. and Ramakrishnan, T. V., Phys. Rev. B 26, 4009 (1982).10.1103/PhysRevB.26.4009CrossRefGoogle Scholar