Skip to main content

Electrochemical Tuning of Single-Wall Carbon Nanotube Mat and Investigations on Actuator Mechanism

  • S. Gupta (a1), M. Hughes (a2) and J. Robertson (a3)

Electrochemical tuning of single-wall carbon nanotubes has been investigated using in situ Raman spectroscopy. We built a linear actuator from single-wall carbon nanotube mat and studied in several alkali metal (Li, Na, and K) and alkaline earth (Ca) halide solutions. The variation of bonding with electrochemical biasing was monitored using in situ Raman. This is since Raman can detect changes in C-C bond length: the radial breathing mode (RBM) at ∼190 cm−1 varies inversely with the nanotube diameter and the G band at ∼1590 cm−1 varies with the axial bond length. In addition, the intensities of both the modes vary significantly in a nonmonotonic manner pointing at the emptying/depleting or filling of the bonding and anti-bonding states - electrochemical charge injection. We discuss the variation of spectroscopic observables (intensity/frequency) of these modes providing valuable information on the charge transfer dynamics on the single-wall carbon nanotubes mat surface. We found the in-plane compressive strain (∼ -0.25%) and the charge transfer per carbon atom (fc ∼ -0.005) as an upper bound for the electrolytes used i.e. CaCl2. These results can be quantitatively understood in terms of the changes in the energy gaps between the one-dimensional van Hove singularities in the electron density of states arising possibly due to the alterations in the overlap integral of π bonds between the p orbitals of the adjacent carbon atoms. Moreover, the extent of variation of the absolute potential of the Fermi level or alternatively modification of band gap is estimated from modeling Raman intensity to be around 0.1 eV as an upper bound for CaCl2.

Corresponding author
* E-mail address:
Hide All
1.Terrones M., Banhart F., Grobert N., Charlier J.-C., Terrones H. and Ajayan P.M., Phys. Rev. Lett. 89, 075505 (2002);
Banhart F., Nano Lett. 1, 329 (2001).
2.Treacy M. M. J., Ebbesen T. W., and Gibson J. M., Nature, 381, 678 (1996).
3.Bonnard J. M., Savetat J. P., Stockli T., de Heer W. A., Forró L., and Chatelain A., Appl. Phys. Lett. 73, 918 (1998).
4.Gao B., Kelinhammes A., Tang X. P., Bower C., Wu Y., and Zhou O., hem. Phys. Lett. 307, 153 (1999);
Liu J., et. al., Science, 280, 1253 (1998).
5.Kane C. L. and Mele E. J., Phys. Rev. Lett. 78, 1932 (1997).
6.Gupta S., Hughes M., Windle A. H., and Robertson J., J. Appl. Phys. (2003) (Submitted) and references therein.
7.Baughman R. H., Cui C., Zakhidov A. A., Iqbal Z., Barisci J. N., Spinks G. M., Wallace G. G., Mazzoldi A., De Rossi D., Rinzler A. G., Jaschinski O., Roth S., and Kertesz M., Science, 284, 1340 (1999).
8.Hubner J. E., et. al. Proc. Roy. Soc. Lond. A 453, 2185 (1997).
9.Treacy M. M. J., Ebbesen T. W., and Gibson J. M., Nature, 381, 678 (1996).
10.Falvo M. R., Curry G. J., Taylor R. M., Chi V., Brooks F. P., Washburn S., and Superfine R., Nature, 389, 582 (1997).
11.Ebbesen T. W., Lezec H. J., Hiura H., Bennett J. W., Ghaemi H. F., and Thio T., Nature, 382, 54 (1996).
12.Dresselhaus M. S. and Dresselhaus G., in Light Scattering in Graphite Intercalation Compounds, Topics in Applied Physics Series, Vol. 53 edited by Cardona M. and Güntherodt G. (Springer-Verlag, Berlin, 1982, p. 3).
14.Gupta S., Hughes M., Windle A. H., and Robertson J., Diam. and Relat. Materials, 13, (2003).
15.Marquardt D. W., J. Soc. Indis. Appl. Math. 11, 431 (1963).
16.Hughes M., Shaffer M. S. P., Renouf A. C., Singh C., Chen G. Z., Fray D. J., and Windle A. H., Adv. Materials, 14, 382 (2002).
17.Claye A. S., Fischer J. E., Huffman C. B., Rinzler A. G., and Smalley R. E., J. Electrochm. Soc. 147, 2845 (2000).
18.Liu C., Bard A. J., Wudl F., Heitz I., and Heath J. R., Electrochem. Solid-State Lett. 2, 577 (1999).
19.Wood J. R., Frogley M. D., Meurs E. R., Prins A. D., Peijs T., Dubstan D. J., and Wagner H. D., J. Phys. Chem. B 103, 10388 (1999).
20.Rao A. M., Richter E., Bandow S., Chase B., Eklund P. C., Williams K. A., Fang S., Subbaswamy K. R., Menon M., Thess A., and Smalley R. E., Science, 275, 187 (1997).
21.Dresselhaus M. S. and Eklund P. C., Adv. Phys. 49, 705 (2000).
22.Reich S., Thomsen C., and Ordejón P., Phys. Rev. B 65, 153407 (2002);
Sandler J., Shaffer M. S. P., Windle A. H., Halsall M. P., Montes-Morán M. A., Cooper C. A., and Young R. J., Phys. Rev. B 67, 035417 (2003) and references therein.
23.An C. P., Zardeny Z. V., Iqbal Z., Spinks G., Baughman R. H., and Zakhidov A., Synth. Met. 116, 411 (2001).
24.Kavan L., Rapta P., Dunsch L., Bronikowski M. J., Willis P., and Smalley R. E., J. Phys. Chem. 105 B, 10764 (2001).
25.Duesburg G. S., unpublished results.
26.Chan C. T., Kamitakahara W. A., Ho K. M., and Eklund P. C., Phys. Rev. Lett. 58, 1528 (1987);
Pietronero L. and Strässler S., Phys. Rev. Lett. 47, 593 (1981).
27.Ghosh S., Sood A. K., and Rao C. N. R., J. Appl. Phys. 92, 1165 (2002);
Okazaki K. -i., Nakato Y., and Murakoshi K., Phys. Rev. B 68, 035434 (2003);
Charlier J. -C. and Lambin Ph., Phys. Rev. B 57, R15037 (1998).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 31 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.