Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T03:41:23.433Z Has data issue: false hasContentIssue false

Electron Irradiation Induced Crystallization of Amorphous Al2O3 Films on Silicon Substrates

Published online by Cambridge University Press:  21 February 2011

J. Liu
Affiliation:
Department of Physics, SUNY at Albany, Albany, NY 12222
C. J. Barbero
Affiliation:
Department of Physics, SUNY at Albany, Albany, NY 12222
J. W. Corbett
Affiliation:
Department of Physics, SUNY at Albany, Albany, NY 12222
K. Rajan
Affiliation:
Material Engineering Department, NY State Center for Advanced Technology in Automation and Robotics, Rensselaer Polytechnic Institute, Troy, NY 12180
H. Leary
Affiliation:
IBM Corporation, East Fishkill, NY 12533
Get access

Abstract

An in situ study of electron beam irradiation induced amorphous–to–crystalline transformation of Al2O3 films on silicon substrates has been carried out using transmission electron microscopy. Trigonal α–Al2O3 crystallites can be observed for electron beam dose rates larger than 10 mA/cm2. It is found that the nucleation and growth processes dominate near the Al2O3–Si interface. The possible effect of the silicon substrate on the growth of Al2O3 crystallites is considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tung, S. K. and Caffery, R. E., J. Electrochem. Soc. 115, 239C (1968).Google Scholar
2. Waxman, A. and Zaininger, K. H., Appl. Phys. Lett. 12, 109 (1968).Google Scholar
3. Ishida, M., Katakabe, I., Ohtake, N., and Nakamura, T., Appl. Phys. Lett. 52, 1326 (1988).Google Scholar
4. Ishida, M., Sawada, K., Yamaguchi, S., Nakamura, T., and Suzaki, T., Appl. Phys. Lett. 55, 556 (1989).Google Scholar
5. Ishida, M., Yamaguchi, S., Masa, Y., Nakamura, T., and Hikita, Y., J. Appl. Phys. 69, 8408 (1991).Google Scholar
6. Thornton, J. A. and Chin, J., Ceram. Bulletin 56, 504 (1977).Google Scholar
7. Freiser, R. G., J. Electrochem. Soc. 113, 357 (1966).Google Scholar
8. Salama, C. A. T., J. Electrochem. Soc. 117, 913 (1970).Google Scholar
9. Pratt, I. H., Solid State Technol. 12, 49 (1969)Google Scholar
10. Dragoo, A. L. and Diamond, J. J., J. Am. Ceram. Soc. 50, 68 (1967).CrossRefGoogle Scholar
11. Lux, B., Colombier, C., Altena, H., and , Stjernberg, Thin Solid Films 138, 49 (1986).CrossRefGoogle Scholar
12. Skogsmo, J., Liu, P., Chatfield, C., and Norden, H., 12th International Plansee Seminar V.3, (Metallwerk Plansee Gmbh, Reutte, Tirol, Austria, 1989), p129.Google Scholar
13. Chou, T. C. and Nieh, T. G., MRS Symp. Proc. V. 230, 345 (1991).Google Scholar
14. White, C. W. et al. , MRS Symp. Proc. 60, 337 (1986).Google Scholar
15. Zhou, W., Cao, D. X., and Sood, D. K., MRS Symp. Proc. V.127, 337 (1986).Google Scholar
16. Liu, J., Barbero, C. J., Corbett, J. W., Rajan, K., and Leary, H., to be published in J. Appl. Phys. May (1993).Google Scholar
17. Doremus, R. H., Rates of Phase Transformations, 1st ed. (Academic Press, New York, 1985), p. 119.Google Scholar
18. Reimer, L., in Transmission Electron Microscopy, edited by MacAdam, D. L. (Springer-Verlag, New York, 1984), p. 421.Google Scholar
19. Christian, J. W., in Theory of Phase Transformations in Metals and Alloys, (Pergamon, New York, 1965).Google Scholar
20. Duwez, P., Annu. Rev. Mater. Sci. 6, 83 (1976).Google Scholar
21. Reference 17, p. 24.Google Scholar