Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T10:00:29.740Z Has data issue: false hasContentIssue false

Electron-Beam Induced Growth of Silica Nanowires and Silica/Carbon Heterostructures

Published online by Cambridge University Press:  01 February 2011

Francisco Solá
Affiliation:
francisco.sola@prlsam.org, University of Puerto Rico, Department of Physics, Rio Piedras Campus, San Juan, 00931, Puerto Rico
Oscar Resto
Affiliation:
oscar@uprrp.edu, University of Puerto Rico, Department of Physics, Rio Piedras Campus, San Juan, 00931, Puerto Rico
Azlin M Biaggi-Labiosa
Affiliation:
azlinbiaggi-labiosa@uprrp.edu, University of Puerto Rico, Department of Physics, Rio Piedras Campus, San Juan, 00931, Puerto Rico
Luis F Fonseca
Affiliation:
luis@uprrp.edu, University of Puerto Rico, Physics, Rio Piedras Campus, San Juan, 00931, Puerto Rico, 787-767 0940, 787-764 9006
Get access

Abstract

A novel synthesis of silica nanowires and silica/carbon heterostructures by electron beam irradiation on porous silicon films was investigated. The method allows us to monitor the growth process in real time at atomic scales. Depending on the electron dose we obtain nanowires with diameters in the range of 15-49nm and lengths up to 500 nm. We found that the adequate electron dose was between 0.01 Acm-2 and 2 Acm-2. Additional electron dose causes plastic and failure deformations in the silica nanowires. A growth model consistent with our findings is presented that involves the flow of mass from the substrate to the nanowire driven by the local electric fields. Heterostructures showing a nanopalm-like shape are obtained after exposing the silica nanowire to poor vacuum conditions in which carbon aggregation from the surrounding gas is promoted by the local electric fields enhanced at the tip of the silica wires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature 354, 5658(1991).Google Scholar
2. Tong, L., Lou, J., Gattass, R., He, S., Chen, X., Liu, L., and Mazur, E., Nano Lett. 5, 259 (2005).Google Scholar
3. Lou, J.Y., Tong, L.M., Ye, Z., Opt. Express 13, 2135 (2005).Google Scholar
4. Yu, D.P., Hang, Q.L., Ding, Y., Zhang, H.Z., Bai, Z.G., Wang, J.J., Zou, Y.H., Qian, W., Xiong, G. C., and Feng, S.Q., Appl. Phys. Lett. 73, 3076(1998).Google Scholar
5. C., Wu X., W. H., Song, Y., Wang K., Hu, T., Zhao, B., Y.D., Sun and Du J.J., ,Chem. Phys.Lett. 336, 53(2001).Google Scholar
6. Liang, C.H., Zhang, L.D., Meng, G.W., Wang, Y.W., and Chu, Z.Q., J. Non-Cryst. Solids 277, 63(2000).Google Scholar
7. Cullis, A.G., Canham, L.T., and Calcott, P.D.J., J. App. Phys. 82, 909 (1997).Google Scholar
8. Canham, L.T., Cullis, A.G., Pickering, C., Dosser, O.D., Cox, T.I., and Lynch, T.P., Nature(London) 368, 133 (1994).Google Scholar
9. Posada, Y., Miguel, L. San, Fonseca, L.F., Resto, O., Weisz, S.Z., Kim, C.H., and Shinar, J., J. Appl. Phys. 96, 2240 (2004)Google Scholar
10. Balberg, I., Philos. Mag. B 80, 691 (2000).Google Scholar
11. Ajayan, P.M. and Iijima, S., J. Non-Cryst. Solids 150, 423(1992).Google Scholar
12. Ahn, C.C. and Krivanek, O.L., EELS Atlas: a reference guide of electron energy loss spectra covering all stable elements, Gatan Inc., Warrendable, PA, USA, 1983, p. 169.Google Scholar
13. Egerton, R. F., Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum, New York, 1996), Chap. 5.Google Scholar
14. Ajayan, P.M. and Iijima, S., Philos. Mag. Lett. 65, 43 (1992).Google Scholar
15. Regan, B.C., Aloni, S., Ritchie, R.O., Dahmen, U., and Zettl, A., Nature (London) 428, 924 (2004).Google Scholar
16. Banhart, F., Phys. Rev. E 52, 5156 (1995).Google Scholar
17. Xie, G., Song, M., Furuya, K., Louzguine, D., and Inoue, A., Appl. Phys. Lett. 88, 263120 (2006).Google Scholar
18. Rotkina, L., Lin, J.-F., and Bird, J.P., Appl. Phys. Lett. 83, 4426 (2003).Google Scholar