Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T18:45:02.641Z Has data issue: false hasContentIssue false

Electronic transport and structure of microcrystalline silicon deposited by the VHF-GD technique

Published online by Cambridge University Press:  15 February 2011

M. Goerlitzer
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, 2000 Neuchâtel, Switzerland.
N. Beck
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, 2000 Neuchâtel, Switzerland.
P. Torres
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, 2000 Neuchâtel, Switzerland.
U. Kroll
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, 2000 Neuchâtel, Switzerland.
H. Keppner
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, 2000 Neuchâtel, Switzerland.
J. Meier
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, 2000 Neuchâtel, Switzerland.
J. Koehler
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, 2000 Neuchâtel, Switzerland.
N. Wyrsch
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, 2000 Neuchâtel, Switzerland.
A. V. Shah
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, 2000 Neuchâtel, Switzerland.
Get access

Abstract

Electronic transport parallel and perpendicular to growth direction has been studied in a series of microcrystalline silicon samples obtained by various dilutions of silane in hydrogen. It is clearly shown that the transport properties (dark conductivity, drift mobility, ambipolar diffusion length and photoconductivity) under dark and under illumination conditions are enhanced as the dilution is increased. Furthermore, these films exhibit no degradation upon light-soaking. X-Ray diffraction patterns of the samples confirm that there is a correlation between the amount of crystalline fraction in the samples and the transport properties, as well as a preferential orientation along the growth direction. A similar correlation is found with the shift of the Si-H stretching mode peak of the infrared spectra (IR). Because transport properties have been measured by different techniques (dark conductivity, ambipolar length and photoconductivity in the direction perpendicular to growth direction, drift mobility in the direction parallel to growth direction), no statement can be made about a possible anisotropy in transport, as it would be expected from the columnar shape of the crystallites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Meier, J., Torres, P., Platz, R., Dubail, S., Kroll, U., Anna Selvan, J. A., Pellaton Vaucher, N., Hof, Ch., Fischer, D., Keppner, H., Shah, A., Ufert, K.-D., Giannoulès, P. and Koehler, J., Mat. Res. Soc. Symp. Proc. 420, 3 (1996).Google Scholar
[2] Curtins, H., Wyrsch, N., Favre, M. and Shah, A. V., Plasma chem. & Plasma Proc. 7, 267 (1987).Google Scholar
[3] Meier, J., Dubail, S., Flückiger, R., Fischer, D., Keppner, H. and Shah, A., Proc. of the 1st WCPEC, Hawaii, USA, 409 (1994).Google Scholar
[4] Torres, P., Meier, J., Flückiger, R., Kroll, U., Anna Selvan, J. A., Keppner, H., Shah, A., Littelwood, S. D., Kelly, I. E., Giannoulès, P., Appl. Phys. Lett. 69, 1373 (1996).Google Scholar
[5] Beck, N., Torres, P., Fric, J., Remeš, Z., Poruba, A., Stuchlíková, H., Fejfar, A., Wyrsch, N., Vanaěĉek, M., Koĉka, J. and Shah, A., to be published in Mat. Res. Soc. Symp. Proc., Fall meeting, Boston (1996).Google Scholar
[6] Sauvain, E., Ph. D. Thesis, Université de Neuchâtel, (1992).Google Scholar
[7] Stutzmann, M., Jackson, W. B. and Tsai, C. C, Phys. Rev. B 32, 23 (1985).Google Scholar
[8] Liu, H. and Xu, M., Sol. Stat. Comm. 58, 601 (1986).Google Scholar
[9] Ritter, D., Zeldov, E. and Weiser, K., Appl. Phys. Lett. 49, 791 (1986).Google Scholar
[10] Balberg, I., Delahoy, A. E. and Weakliem, H. A., Appl. Phys. Lett. 53, 992 (1988).Google Scholar
[11] Goerlitzer, M., Beck, N., Torres, P., Meier, J., Wyrsch, N. and Shah, A., J. Appl. Phys. 80, 5111 (1996).Google Scholar
[12] Wyrsch, N., Goerlitzer, M., Beck, N., Meier, J. and Shah, A., Mat. Res. Soc. Symp. Proc. 420, 801 (1996).Google Scholar
[13] Keppner, H. et al., to be published in Mat. Res. Soc. Symp. Proc, Fall meeting, Boston (1996).Google Scholar
[14] Kroll, U., Meier, J., Shah, A., Mikhailov, S. and Weber, J., J. Appl. Phys. 80, 4971 (1996).Google Scholar
[15] Wagner, H. and Beyer, W., Solid State Commun. 48, 587 (1983).Google Scholar
[16] Chabal, Y. J., Chaban, E. E. and Christman, S. B., J. Electron Spectrosc. Relat. Phenom. 29, 35 (1983).Google Scholar
[17] Chabal, Y. J., Phys. Rev. Lett. 50, 1850 (1983).Google Scholar
[18] Satoh, T. and Hiraki, A., J. Appl. Phys. 24, L491 (1985).Google Scholar
[19] Kroll, U., Meier, J., Keppner, H., Littlewood, S. D., Kelly, I. E., Giannoulès, P. and Shah, A., Mat. Res. Soc. Symp. Proc. 377, 39 (1995).Google Scholar