Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T08:14:53.290Z Has data issue: false hasContentIssue false

Electronically Stimulated Degradation of Crystalline Silicon Solar Cells

Published online by Cambridge University Press:  01 February 2011

J. Schmidt
Affiliation:
Institute of Solar Energy Research Hameln/Emmerthal (ISFH), Am Ohrberg 1, D-31860 Emmerthal, Germany
K. Bothe
Affiliation:
Institute of Solar Energy Research Hameln/Emmerthal (ISFH), Am Ohrberg 1, D-31860 Emmerthal, Germany
D. Macdonald
Affiliation:
Department of Engineering, Australian National University, Canberra ACT 0200, Australia
J. Adey
Affiliation:
School of Physics, University of Exeter, Exeter, EX4 4QL, United Kingdom
R. Jones
Affiliation:
School of Physics, University of Exeter, Exeter, EX4 4QL, United Kingdom
D. W. Palmer
Affiliation:
School of Physics, University of Exeter, Exeter, EX4 4QL, United Kingdom
Get access

Abstract

Carrier lifetime degradation in crystalline silicon solar cells under illumination with white light is a frequently observed phenomenon. Two main causes of such degradation effects have been identified in the past, both of them being electronically driven and both related to the most common acceptor element, boron, in silicon: (i) the dissociation of iron-boron pairs and (ii) the formation of recombination-active boron-oxygen complexes. While the first mechanism is particularly relevant in metal-contaminated solar-grade multicrystalline silicon materials, the latter process is important in monocrystalline Czochralski-grown silicon, rich in oxygen. This paper starts with a short review of the characteristic features of the two processes. We then briefly address the effect of iron-boron dissociation on solar cell parameters. Regarding the boron-oxygen-related degradation, the current status of the physical understanding of the defect formation process and the defect structure are presented. Finally, we discuss different strategies for effectively avoiding the degradation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Macdonald, D. H., Geerlings, L. J., and Azzizi, A., J. Appl. Phys. 95, 1021 (2004).Google Scholar
2 Fischer, H. and Pschunder, W., Proc. 10th IEEE Photovolt. Spec. Conf. (IEEE, NY, 1973) p. 404.Google Scholar
3 Schmidt, J., Aberle, A.G., and Hezel, R., Proc. 26th IEEE Photovolt. Spec. Conf. (IEEE, NY, 1997) p. 13.Google Scholar
4 Glunz, S.W., Rein, S., Warta, W., Knobloch, J., and Wettling, W., Proc. 2nd World Conf. Photovolt. Solar Energy Conv. (EC, Ispra, 1998) p. 1343.Google Scholar
5 Bothe, K., Hezel, R. and Schmidt, J., Appl. Phys. Lett. 83, 1125 (2003).Google Scholar
6 Istratov, A.A., Hieslmair, H. and Weber, E.R., Appl. Phys. A 69, 13 (1999).Google Scholar
7 Kimerling, L.C. and Benton, J.L., Physica B 116, 297 (1983).Google Scholar
8 Macdonald, D. and Cuevas, A., Prog. Photovolt. 8, 363 (2000).Google Scholar
9 Schmidt, J., Prog. Photovolt. (2005) (in press).Google Scholar
10 Schmidt, J. and Cuevas, A., J. Appl. Phys. 86, 3175 (1999).Google Scholar
11 Kimerling, L.C., Asom, M.T., Benton, J.L., Drevinsky, P.J. and Caefer, C.E., Mat. Sci. For. 38-41, 141 (1989).Google Scholar
12 Rein, S. and Glunz, S., Appl. Phys. Lett. 82, 1054 (2003).Google Scholar
13 Bothe, K., Hezel, R. and Schmidt, J., Solid State Phenomena 95-96, 223 (2004).Google Scholar
14 Rein, S. et al., Proc. 17th European Photovolt. Solar Energy Conf. (WIP-ETA, Munich, 2001) p. 1555.Google Scholar
15 Schmidt, J. and Bothe, K., Phys. Rev. B 69, 024107 (2004).Google Scholar
16 Rein, S., Glunz, S.W. and Willeke, G., Proc. 3rd World Conf. Photovolt. Solar Energy Conv. (2003) p. 2899.Google Scholar
17 Schmidt, J., Bothe, K. and Hezel, R., Proc. 29th IEEE Photovolt. Spec. Conf. (IEEE, NY, 2002) p. 178.Google Scholar
18 Murin, L. I., Hallberg, T., Markevich, V. P. and JLindström, . L., Phys. Rev. Lett. 80, 93 (1998).Google Scholar
19 Ewels, C. P., PhD. Thesis, University of Exeter, UK (1997).Google Scholar
20 Adey, J., Jones, R., Palmer, D.W., Briddon, P.R. and öberg, S., Phys. Rev. Lett. 93, 055504 (2004).Google Scholar
21 Lee, Y.J., Boehm, J. von, Pesola, M. and Nieminen, R.M, Phys. Rev. Lett. 86, 3060 (2001).Google Scholar
22 Glunz, S., Rein, S., Knobloch, J., Wettling, W., and Abe, T., Prog. Photovolt. 7, 463 (1999).Google Scholar
23 Glunz, S., Rein, S., Lee, J., and Warta, W., J. Appl. Phys. 90, 2397 (2001).Google Scholar
24 Metz, A., Abe, T., and Hezel, R., Proc. 16th European Photovolt. Solar Energy Conf. (James & James, London, 2000) p. 1189.Google Scholar
25 Zhao, J., Wang, A., and Green, M., Proc. 16th European Photovolt. Solar Energy Conf. (James & James, London, 2000) p. 1100.Google Scholar
26 Zhao, J., Wang, A., and Green, M., Prog. Photovolt. 8, 549 (2000).Google Scholar
27 Glunz, S., Rein, S., Warta, W., Knobloch, J., and Wettling, W., Sol. Energ. Mat. Sol. Cells 65, 219 (2001).Google Scholar
28 Bothe, K., Schmidt, J., and Hezel, R., Proc. 29th IEEE Photovolt. Spec. Conf. (IEEE, New York, 2002), p. 194.Google Scholar
29 Nagel, H., Merkle, A., Metz, A., and Hezel, R., Proc. 16th European Photovolt. Solar Energy Conf. (James & James, pLondon, 2000) p. 1197.Google Scholar
30 Lee, J., Peters, S., Rein, S., and, Glunz, S., Prog. Photovolt. 9, 417 (2001).Google Scholar
31 Schmidt, J. and Cuevas, A., Proc. 16th European Photovolt. Solar Energy Conf. (James & James, London, 2000) p. 1193.Google Scholar
32 Münzer, K., Holdermann, K., Schlosser, R., Sterk, S., IEEE Trans. Electron Dev. 46, 2055 (1999).Google Scholar
33 Glunz, S., Dicker, J., Lee, J., Preu, R., Rein, S., Schneiderlöchner, E., Sölter, J., Warta, W., and Willeke, G., Proc. 17th European Photovolt. Solar Energy Conf. (WIP-ETA, Munich, 2001) p. 1287.Google Scholar