Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T21:49:39.233Z Has data issue: false hasContentIssue false

Employing μc-SiOX:H as n-Type Layer and Back TCO Replacement for High-Efficiency a-Si:H/μc-Si:H Tandem Solar Cells

Published online by Cambridge University Press:  17 June 2013

S.W. Liang
Affiliation:
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
C.H. Hsu
Affiliation:
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
Y.W. Tseng
Affiliation:
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
Y.P. Lin
Affiliation:
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
C.C. Tsai
Affiliation:
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
Get access

Abstract

The n-type hydrogenated microcrystalline silicon oxide (μc-SiOX:H(n)) films with different stoichiometry have been successfully prepared by varying the CO2-to-SiH4 flow ratio in the PECVD system. By using the μc-SiOX:H(n) as a replacement for μc-Si:H(n) and ITO, the conversion efficiency of μc-Si:H single-junction and a-Si:H/μc-Si:H tandem cells were improved to 6.35% and 10.15%, respectively. The major improvement of the short circuit current density (JSC) and these cell efficiencies were originated from the increased optical absorption, which was confirmed by the quantum efficiency measurement showing increased response in the long-wavelength region. Moreover, the all PECVD process except the metal contact simplified the fabrication and might benefit the industrial production.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meier, J., Flückiger, R., Keppner, H. and Shah, A., Appl. Phys. Lett. 65, 860 (1994).CrossRefGoogle Scholar
Buehlmann, P., Bailat, J., Domine, D., Billet, A., Meillaud, F., Feltrin, A. and Ballif, C., Appl. Phys. Lett. 91, 143505 (2007).CrossRefGoogle Scholar
Fischer, D., Dubail, S., Anna Selvan, J.A., Pellaton Vaucher, N., Platz, R., Hof, Ch., Kroll, U., Meier, J., Torres, P., Keppner, H., Wyrsch, N., Goetz, M., Shah, A. and Ufert, K.-D., Proc. 25th IEEE PVSC, Washington D.C., USA, 1053 (1996).Google Scholar
Obermeyer, P., Haase, C. and Stiebig, H., Appl. Phys. Lett. 92, 181102 (2008).CrossRefGoogle Scholar
Hayashi, K., Masataka, K., Ishikawa, A. and Yamaguchi, H., Proc. 1st IEEE WCPEC, Hawaii, USA, 674 (1994).Google Scholar
Terzini, E., Rubino, A., de Rosa, R. and Addonzonio, M., Mater. Res. Soc. Symp. Proc. 377, 681 (1995).CrossRefGoogle Scholar
Hegedus, S.S., Buchanan, W.A. and Eser, E., Proc. 26th IEEE PVSC, Anaheim, CA, USA, 603 (1997).Google Scholar
Haug, F.J., Söderström, T., Cubero, O., Terrazzoni-Daudrix, V. and Ballif, C., J. Appl. Phys. 104, 064509 (2008).CrossRefGoogle Scholar
Veneri, P.D., Mercaldo, L.V. and Usatii, I., Appl. Phys. Lett. 97, 023512 (2010).CrossRefGoogle Scholar
Lin, Y.P., Tseng, Y.W., Liang, S.W., Hsu, C.H. and Tsai, C.C., presented at the 2012 MRS Spring Meeting, San Francisco, CA, USA, 2012 (unpublished).Google Scholar
Grundler, T., Lambertz, A. and Finger, F., Phys. Status Solidi C 7, 1085 (2010).Google Scholar
Smirnov, V., Astakhov, O., Carius, R., Petrusenko, Yu., Borysenko, V. and Finger, F., Jpn. J. Appl. Phys. 51, 022301 (2012).CrossRefGoogle Scholar
Das, D., Iftiquar, S.M. and Barua, A.K., J. Non-Cryst. Solids 210, 148 (1997).CrossRefGoogle Scholar