Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T09:41:12.672Z Has data issue: false hasContentIssue false

Enhanced Phonon-Energy Coupling: Dramatic Reduction of Leakage Current of Silicon Oxide

Published online by Cambridge University Press:  01 February 2011

Zhi Chen
Affiliation:
zhichen@engr.uky.edu, University of Kentucky, Electrical & Computer Engineering, 453 Anderson Tower, Lexington, KY, 40506, United States, (859)257-2300 ext 268, (859)257-3092
Jun Guo
Affiliation:
junguo66@yahoo.com, University of Kentucky, Dept. of Electrical & Computer Engineering, Lexington, KY, 40506, United States
Chandan B Samantaray
Affiliation:
Chandan B Samantaray , University of Kentucky, Dept. of Electrical & Computer Engineering, Lexington, KY, 40506, United States
Get access

Abstract

We study in detail a newly discovered effect, phonon-energy-coupling enhancement (PECE) effect, produced by rapid thermal processing (RTP). It includes two aspects: (1) Strengthening Si-D bonds and Si-O bonds and (2) Change of energy band structure and effective mass due to thermal shock. It is shown that not only Si-D bonds but also Si-O bonds have been strengthened dramatically, leading to enhancement of robustness of the oxide structure and the oxide/Si interface. For thick oxides (>3 nm), the gate leakage current has been reduced by two orders of magnitude and the breakdown voltage has been improved by ~30% due to phonon-energy coupling. For ultrathin oxides (2.2 nm), the direct tunneling current has been reduced by five-orders of magnitude, equivalent to that of HfO2, probably due to the increased effective mass and barrier height.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Buchanan, D. A., IBM J. Res. Develop. 43, 245 (1999).Google Scholar
2 Onishi, K., Choi, R. N., Kang, C. S., Cho, H. –J., Kim, Y. H., Nieh, R. E., Han, J., Krishnan, S. A., Akbar, M. S., and Lee, J. C., IEEE Trans. Electron Dev. 50, 1517 (2003).Google Scholar
3 Ragnarsson, L.-A., Pantisano, L., Kaushik, V., Saito, S.-I., Shimamoto, Y., Gendt, S. De, and Heyns, M., Tech. Digest-IEEE Int. Electron Dev. Meet. 2003, 87.Google Scholar
4 Gusev, E. P., Buchanan, D. A., Carter, E., Kumar, A., DiMaria, D., et al., Tech. Digest-IEEE Int. Electron Dev. Meet. 2001, 451.Google Scholar
5 Lyding, J. W., Hess, K., and Kizilyalli, I. C., Appl. Phys. Lett. 68, 2526 (1996).Google Scholar
6 Chen, Z., Hess, K., Lee, J., Lyding, J. W., Rosenbaum, E., Kizilyalli, I., Chetlur, S., and Huang, R., IEEE Electron. Dev. Lett. 21, 24 (2000).Google Scholar
7 Li, E., Rosenbaum, E., Tao, J., Yeap, G. C.-F., Lin, M.-R., and Fang, P., Proc. IEEE Int. Reliability Phys. Symp. 1999, 253.Google Scholar
8 Shen, T.-C., Wang, C., Ablen, G. C., Tucker, J. R., Lyding, J. W., Avouris, P., and Walkup, R. E., Science 268, 1590 (1995).Google Scholar
9 Walle, C. G. Van de and Jackson, W. B., Appl. Phys. Lett. 69, 2441 (1996).Google Scholar
10 Wei, J. H., Sun, M. S., , S, Lee, C., Appl Phys Lett 71, 1498 (1997).Google Scholar
11 Chen, Z., “CAREER: Fundamental Reliability Physics of MOS Devices Based on Deuterium Isotope Effects.” Proposal# 0093156 (National Science Foundation, Washington, DC, 2000).Google Scholar
12 Chen, Z., Guo, J., and Ong, P., Appl. Phys. Lett. 83, 2151 (2003).Google Scholar
13 Chen, Z. and Guo, J., presented at the 35th IEEE Semiconductor Interface Specialist Conference (SISC), San Diego, CA, Dec. 9-11, 2004.Google Scholar
14 Chen, Z., Guo, J., and Samantaray, C., Proc. 2005 Int. Semiconductor Device Res. Symp. (ISDRS), Bethesda, MD, USA, December 7-9, 2005.Google Scholar
15 Chen, Z., Guo, J., and Yang, F., Appl. Phys. Lett. 88, 082905 (2006).Google Scholar
16 Queeney, K. T., Weldon, M. K., Chang, J. P., Chabal, Y. J., Gurevich, A. B., Sapjeta, J., and Opila, R. L., J. Appl. Phys. 87, 1322 (2000).Google Scholar
17 Suehle, J. S., IEEE Trans. Electron Dev. 49, 958971 (2002).Google Scholar
18 Mizubayashi, W., Yoshida, Y., Murakami, H., Miyazaki, S., and Hirose, M., IEEE Electron Dev. Lett. 25, 305 (2004).Google Scholar
19 Khairurrijal, , Mizubayashi, W., Muyazaki, S., and Hirose, M., J. Appl. Phys. 87, 3000 (2000).Google Scholar
20 Stadele, M., Sacconi, F., DiCarlo, A., and Lugli, P., J. Appl. Phys. 93, 2681 (2003).Google Scholar
21 Simmons, J. G., J. Appl. Phys. 34, 1793 (1963).Google Scholar