Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T23:59:03.927Z Has data issue: false hasContentIssue false

Enhancement in Thermoelectric Figure-of-merit of n-type Si-Ge Alloy Synthesized Employing High Energy Ball Milling and Spark Plasma Sintering

Published online by Cambridge University Press:  25 January 2013

Sivaiah Bathula
Affiliation:
CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi -110012, India Department of Applied Physics, Delhi Technological University, Delhi, India
M. Jayasimhadri
Affiliation:
Department of Applied Physics, Delhi Technological University, Delhi, India
Ajay Dhar*
Affiliation:
CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi -110012, India
M. Saravanan
Affiliation:
CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi -110012, India
D. K. Misra
Affiliation:
CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi -110012, India
Nidhi Singh
Affiliation:
CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi -110012, India
A. K. Srivastava
Affiliation:
CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi -110012, India
R. C. Budhani
Affiliation:
CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi -110012, India
*
*Corresponding author: adhar@nplindia.org, rcb@nplindia.org Tel.: +91-11- 4560 9455, Fax.: +91-11-45609310
Get access

Abstract

In the present study, we report the enhancement in figure-of-merit (ZT) of nanostructured n-type Silicon-Germanium (Si80Ge20) thermoelectric alloy synthesized using high energy ball milling followed by spark plasma sintering (SPS). After 90 h of ball milling of elemental powders of Si, Ge and P (2 at.%), a complete dissolution of Ge in Si matrix has been observed forming the nanostructured n-type Si80Ge20 alloy powder. X-ray diffraction analysis (XRD) confirmed the crystallite size of the host matrix (Si) to be ∼7 nm and also indicated the formation of an additional phase of SiP nano-precipitates after SPS. HR-TEM analysis revealed that the nano-grained network was retained post-sintering with a crystallite size of size of 9 nm and also confirmed the SiP precipitates formation with a size of 4 to 6 nm. As a result, a very low thermal conductivity of ∼2.3W/mK at 900°C has been observed for Si80Ge20 alloy primarily due to scattering of phonons by nanostructured grains and nano-scaled SiP precipitates which further contribute to this scattering mechanism. Electrical conductivity values of SiGe sintered alloy are slightly lower to that of reported values in literature. This was attributed to the formation of SiP which creates a compositional difference between the grain boundary region and the grain region, leading to a chemical potential difference at interface and the grain region. Figure-of-merit (ZT) of n-type Si80Ge20 nanostructured alloy was found to be ≈1.5 at 900°C, which is the highest reported so far at this temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Snyder, G. J. and Toberer, E. S., Nature Mater. 7, 105 (2008).CrossRefGoogle Scholar
Poudel, B., Hao, Q., Ma, Y., Lan, Y. C., Minnich, A., Yu, B., Yan, X., Wang, D. Z., Muto, A., Vashaee, D., Chen, X. Y., Liu, J. M., Dresselhaus, M. S., Chen, G., and Ren, Z. F., Science 320, 634 (2008).CrossRefGoogle Scholar
Rowe, M., Shukla, V. S., and Savvides, N., Nature 290, 765 (1981)CrossRefGoogle Scholar
Zhang, F. L., Wang, C. Y., Zhu, M. : Scripta Materialia, 2003, 49, 1123.CrossRefGoogle Scholar
Cullity, B. D., Stock, S. R.: Elements of X-Ray Diffraction. 3 rd Ed., Prentice-Hall Inc., 2001, 167.Google Scholar
Zhu, G. H, Lee, H, Lan, Y. C, Wang, X. W, Joshi, G, Wang, D. Z, Yang, J, Vashaee, D, Guilbert, H, Pillitteri, A, Dresselhaus, M. S, Chen, G, Ren, Z. F, Phys. Rev. Lett. 102, 196803 (2009)CrossRefGoogle Scholar
Yin, Liang, Lee, Eun Kyung, Lee, Jong Woon, Whang, Dongmok, Choi, Byoung Lyong, Appl. Phys. Lett. 101, 043114 (2012)CrossRefGoogle Scholar
Satyala, Nikhil and Vashaee, Daryoosh, Appl. Phys. Lett. 100, 073107 (2012)CrossRefGoogle Scholar
Wang, X. W., Lee, H., Lan, Y. C., Zhu, G. H., Joshi, G., Wang, D. Z., Yang, J., Muto, A. J., Tang, M. Y., Klatsky, J., Song, S.,1 Dresselhaus, M. S., Chen, G., and Ren, Z. F., Applied Physics Letters 93, 193121 (2008).CrossRefGoogle Scholar
Zhu, G. H, Lee, H, Lan, Y. C, Wang, X. W, Joshi, G, Wang, D. Z, Yang, J, Vashaee, D, Guilbert, H, Pillitteri, A, Dresselhaus, M. S, Chen, G, Ren, Z. F, Phys. Rev. Lett. 102, 196803 (2009)CrossRefGoogle Scholar
Cook, B. A, Harringa, J. L, Han, S. H and Vinning, C. B, J. Appl. Phys. 78, 5474 (1995)CrossRefGoogle Scholar
Wood, C., Rep. Prog. Phys. 51, 459 (1988)CrossRefGoogle Scholar
Yu, B., Zebarjadi, M., Wang, H., Lukas, K., Wang, H., Wang, D., Opeil, C., Dresselhaus, M., Chen, G., and Ren, Z., Nano Lett. 12, 2077 (2012)CrossRefGoogle Scholar