Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T17:42:46.698Z Has data issue: false hasContentIssue false

Epitaxial Growth of SiC on AlN/ Sapphire Using Hexamethyldisilane by MOVPE

Published online by Cambridge University Press:  21 March 2011

Kasif Teker
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A
Ki Hoon Lee
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A
Chacko Jacob
Affiliation:
Department of Electronics and Information Science, Kyoto Institute of Technology, Kyoto, 606, Japan
Shigehiro Nishino
Affiliation:
Department of Electronics and Information Science, Kyoto Institute of Technology, Kyoto, 606, Japan
Pirouz Pirouz
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A
Get access

Abstract

High quality SiC and AlN films allow the fabrication of metal/AlN/SiC MIS structures and SiC/AlN heterostructures that require a low lattice mismatch and excellent thermal stability. Epitaxial SiC on AlN/sapphire was grown using hexamethyldisilane (HMDS) by MOVPE. 2HAlN is epitaxially grown on sapphire by MOCVD, and subsequently SiC is deposited on it. The growth of high quality SiC was achieved in a one step process without any nucleation step using dilute hydrogen in argon (12% H2 + Ar) as the carrier gas, which is less explosive than pure H2. The effect of growth temperature and thickness of AlN on the SiC crystal quality and the surface smoothness were studied. All films were analyzed using reflection high energy electron diffraction (RHEED), Nomarski differential interference contrast microscopy (NDIC), X-ray diffraction (XRD), and atomic force microscopy (AFM). Optimum temperature for SiC growth was between 1300°C and 1350°C. At these temperatures, the grown films show strong epitaxial relationship with AlN and very smooth surfaces (RMS ∼ 0.1- 0.75 nm). At temperatures below 1300°C, the film becomes polycrystalline. At 1400°C, the films show highly textured features, observed by XRD. In the RHEED, however, weak rings appear superimposed on the spot pattern, which implies the grown films are polycrystalline but highly textured. In order to evaluate the effect of underlying AlN thickness on the SiC film, layers with various thicknesses (50, 200, 400 nm) have been used at 1350°C. The SiC film on a 50 nm thick AlN layer shows a very smooth surface (RMS ∼ 0.1 nm) compared to the SiC film on a 400 nm (RMS ∼ 0.7 nm) AlN layer. This seems to be caused by the increasing roughness of the underlying AlN, as it becomes thicker. However, all the films show highly epitaxial growth features, which implies that 50 nm is sufficient to relieve the mismatch strain of the underlying AlN/sapphire.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nishino, S., Takahashi, K., Tanaka, H. and Saraie, J., in Spencer, M. G., Devaty, R. P., Edmond, J. A., Khan, M. A., Kaplan, R. and Rahman, M. (eds), Proc. 5th Int. Conf. On Silicon Carbide and Related Materials, pp. 63–66 (1994).Google Scholar
2. Dmitriev, V. A., Irvine, K. G., Spencer, M. G. and Nikitina, I. P., in Spencer, M. G., Devaty, R. P., Edmond, J. A., Khan, M. A., Kaplan, R. and Rahman, M., (eds), Proc. 5th Int. Conf. On Silicon Carbide and Related Materials, pp. 67–70 (1994).Google Scholar
3. Chaudhuri, J., Thokala, R., Edgar, J. H. and Sywe, B. S., Thin Solid Films, 274, 23 (1996).Google Scholar
4. Vispute, R. D.. Narayan, J. and Budai, J. D., Thin Solid Films, 299, 94 (1997).Google Scholar