Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T18:19:31.061Z Has data issue: false hasContentIssue false

Evaluation of colloidal CdSe quantum dots with metal chalcogenide ligands for optoelectronic applications

Published online by Cambridge University Press:  27 February 2012

Yiqiang Zhang
Affiliation:
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
R. Acharya
Affiliation:
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
X. A. Cao
Affiliation:
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
Get access

Abstract

Exchanging the original organic ligands of colloidal CdSe quantum dots (QDs) with metal chalcogenide SnS4 ligands resulted in absorption peak redshifts and complete photoluminescence quenching in QD solids. The ITO/QDs/Al structure with SnS4-capped QDs showed much higher electrical conductivity and reduced space-charge limited current. These results are indicative of carrier delocalization as well as enhanced inter-QD electronic coupling caused by the inorganic ligands. The SnS4-capped QDs were able to retain strong excitonic absorption. The photocurrent spectral response of the all-inorganic QD film resembled its absorption spectra, and was three orders of magnitude stronger than that of QDs with organic ligands. It was found that mild annealing at ∼ 200 oC transformed the SnS4-capped QD film into to a more conductive assembly, degrading its absorption and photocurrent generation. These findings suggest that colloidal QDs with metal chalcogenide ligands are better suited for solar energy conversion and photodetection than use in light-emitting devices as luminophores.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Talapin, D. V., Lee, J., Kovalenko, M. V. and Shevchenko, E. V., Chem. Rev. 110, 389 (2010).Google Scholar
2. Rogach, A., Gaponik, N., Lupton, J., Bertoni, C., Gallardo, D., Dunn, S., Pira, N., Paderi, M., Repetto, P., et al. ., Angew. Chem. Int. Ed. 47, 6538 (2008).Google Scholar
3. Sargent, E. H., Adv. Mater. 20, 3958, (2008).Google Scholar
4. Luther, J. M., Law, M., Beard, M. C., Song, Q., Reese, M. O., Ellingson, R. J. and Nozik, A. J., Nano Lett. 8, 3488 (2008).Google Scholar
5. Niu, Y. H., Munro, A. M., Cheng, Y. J., Tian, Y. Q., Liu, M. S., Zhao, J. L., Bardecker, J. A., Plante, I. J., Ginger, D. S., and Jen, A. K., Adv. Mater. 19, 3371 (2007).Google Scholar
6. , Kang, S. H, Kumar, C. K., Lee, Z., Kim, K. H., Huh, C., and Kim, E. T., Appl. Phys. Lett. 93, 191116 (2008).Google Scholar
7. Cho, K., Lee, E., Joo, W. J., Jang, E., Kim, T., Lee, S. J., Kwon, S. J., Han, J. Y., Kim, B. K., Choi, B. L., and Kim, J. M., Nature Photonics 3, 341 (2009).Google Scholar
8. Gaponik, N. and Rogach, A. L, Phys. Chem. Chem. Phys. 12, 8685 (2010).Google Scholar
9. Kovalenko, M. V., Scheele, M., and Talapin, D. V., Science 324, 1417 (2009).Google Scholar
10. Lee, J. S., Kovalenko, M. V., Huang, J., Chung, D. S., and Talapin, D. V., Nature Nanotech. 6, 348 (2011).Google Scholar
11. Nag, A., Kovalenko, M. V., Lee, J., Liu, W., Spokoyny, B., and Talapin, D.V., J. Am. Chem. Soc. 133, 10612 (2011).Google Scholar
12. Tang, J., Kemp, K. W., Hoogland, S., Jeong, K. S., Liu, H., Levina, L., Furukawa, M., Wang, X., Debnath, R., Cha, D., Chou, K. W., Fischer, A., Amassian, A., Asbury, J. B., and Sargent, E. H., Nature Materials 10, 765 (2011).Google Scholar
13. Chandler, R. E., Houtepen, A. J., Nelson, J., and Vanmaekelbergh, D., Phys. Rev. B 75, 085325 (2007).Google Scholar
14. Talgorn, E., Moysidou, E., Abellon, R. D., Savenije, T. J., Goossens, A., Houtepen, A. J. and Siebbeles, L. D. A., J. Phys. Chem. C 114, 3441 (2010).Google Scholar
15. Zhang, Y. Q. and Cao, X. A., Appl. Phys. Lett. 99, 023106 (2011).Google Scholar
16. Drndic, M., Jarosz, M. V., Morgan, N. Y., Kastner, M. A., and Bawendi, M. G., J. Appl. Phys. 92, 7498 (2002).Google Scholar
17. Ginger, D. S. and Greenham, N. C., J. Appl. Phys. 87, 1361 (2000).Google Scholar