Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T09:05:46.504Z Has data issue: false hasContentIssue false

Evaluation of Copper Penetration in Low-κ Polymer Dielectrics by Bias-Temperature Stress

Published online by Cambridge University Press:  10 February 2011

Alvin L. S. Loke
Affiliation:
Center for Integrated Systems, Stanford University, CIS 202 MC 4070, Stanford, CA 94305, aloke@holst.stanford.edu Currently at Hewlett-Packard Company, 3500 Deer Creek Road, Palo Alto, CA 94304.
S. Simon Wong
Affiliation:
Center for Integrated Systems, Stanford University, CIS 202 MC 4070, Stanford, CA 94305, aloke@holst.stanford.edu
Niranjan A. Talwalkar
Affiliation:
Center for Integrated Systems, Stanford University, CIS 202 MC 4070, Stanford, CA 94305, aloke@holst.stanford.edu
Jeffrey T. Wetzel
Affiliation:
Advanced Products Research and Development Laboratory, Motorola, Inc., 3501 Ed Bluestein Boulevard, Austin, TX 78721
Paul H. Townsend
Affiliation:
The Dow Chemical Company, 1712 Building, Midland, MI 48674
Tsuneaki Tanabe
Affiliation:
Central Technical Laboratory, Asahi Chemical Industry Company, 2–1, Samejima, Fuji, JAPAN
Raymond N. Vrtis
Affiliation:
Schumacher, 1969 Palomar Oaks Way, Carlsbad, CA 92009
Melvin P. Zussman
Affiliation:
HD MicroSystems, 334–127 Route 141 Murphy Road, Wilmington, DE 19880
Devendra Kumar
Affiliation:
Novellus Systems, 81 Vista Montana, San Jose, CA 95134
Get access

Abstract

The industry is strongly interested in integrating low-κ dielectrics with Damascene copper. Otherwise, with conventional materials, interconnects cannot continue to scale without limiting circuit performance. Integration of copper wiring with silicon dioxide (oxide) requires barrier encapsulation since copper drifts readily in oxide. An important aspect of integrating copper wiring with low-κ dielectrics is the drift behavior of copper ions in these dielectrics, which will directly impact the barrier requirements and hence integration complexity.

This work evaluates and compares the copper drift properties in six low-κ organic polymer dielectrics: parylene-F; benzocyclobutene; fluorinated polyimide; an aromatic hydrocarbon; and two varieties of poly(arylene ether). Copper/oxide/polymer/oxide/silicon capacitors are subjected to bias-temperature stress to accelerate penetration of copper from the gate electrode into the polymer. The oxide-sandwiched dielectric stack is used to overcome interface instabilities occurring when a low-κ dielectric is in direct contact with either the gate metal or silicon substrate. The copper drift rates in the various polymers are estimated by electrical techniques, including capacitance-voltage, current-voltage, and current-time measurements. Results correlate well with timeto-breakdown obtained by stressing the capacitor dielectrics. Our study shows that copper ions drift readily into fluorinated polyimide and poly(arylene ether), more slowly into parylene-F, and even more slowly into benzocyclobutene. A qualitative comparison of the chemical structures of the polymers suggests that copper drift in these polymers may possibly be retarded by increased crosslinking and enhanced by polarity in the polymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Edelstein, D., Heidenreich, J., Goldblatt, R., Cote, W., Uzoh, C., Lustig, N., Roper, P., McDevitt, T., Motsiff, W., Simon, A., Dukovic, J., Wachnik, R., Rathore, H., Schulz, R., Su, L., Luce, S., and Slattery, J., IEEE Int'l Electron Device Meeting Tech. Digest, 773776 (1997).Google Scholar
[2] Venkatesan, S., Gelatos, A.V., Misra, V., Smith, B., Islam, R., Cope, J., Wilson, B., Tuttle, D., Cardwell, R., Anderson, S., Angyal, M., Bajaj, R., Capasso, C., Crabtree, P., Das, S., Farkas, J., Filipiak, S., Fiordalice, B., Freeman, M., Gilbert, P.V., Herrick, M., Jain, A., Kawasaki, H., King, C., Klein, J., Lii, T., Reid, K., Saaranen, T., Simpson, C., Sparks, T., Tsui, P., Venkatraman, R., Watts, D., Weitzman, E.J., Woodruff, R., Yang, I., Bhat, N., Hamilton, G., and Yu, Y., IEEE Int'l Electron Device Meeting Tech. Digest, 769772 (1997).Google Scholar
[3] B. Luther White, J.F., Uzoh, C., Cacouris, T., Hummel, J., Guthrie, W., Lustig, N., Greco, S., Greco, N., Zuhoski, S., Agnello, P., Colgan, E., Mathad, S., Saraf, L., Weitzman, E.J., Hu, C.K., Kaufman, F., Jaso, M., Buchwalter, L.P., Reynolds, S., Smart, C., Edelstein, D., Baran, E., Cohen, S., Knoedler, C.M., Malinowski, J., Horkans, J., Deligianni, H., Harper, J., Andricacos, P.C., Paraszczak, J., Pearson, D.J., and Small, M., Proc. VLSI Multilevel Interconnection Conf., 1521 (1993).Google Scholar
[4] Zielinski, E.M., Russell, S.W., List, R.S., Wilson, A.M., Jin, C., Newton, K.J., Lu, J.P., Hurd, T., Hsu, W.Y, Cordasco, V., Gopikanth, M., Korthuis, V., Lee, W., Cerny, G., Russell, N.M., Smith, P.B., O'Brien, S., and Havemann, R.H., IEEE Int'l Electron Device Meeting Tech. Digest, 936938 (1997).Google Scholar
[5] Saraswat, K.C. and Mohammadi, F., IEEE Trans. Electron Devices ED-29 (4), 645650 (1982).10.1109/T-ED.1982.20757Google Scholar
[6] Bohr, M.T., IEEE Int'l Electron Device Meeting Tech. Digest, 241244 (1995).Google Scholar
[7] McBrayer, J.D., Swanson, R.M., and Sigmon, T.W., J. Electrochem. Soc. 133 (6), 12421246 (1986).10.1149/1.2108827Google Scholar
[8] Cho, J.S.H., Kang, H.-K., Asano, I., and Wong, S.S., IEEE Int' Electron Device Meeting Tech. Digest, 297300 (1992).Google Scholar
[9] Y Shacham-Diamand, Dedhia, A., Hoffstetter, D., and Oldham, W.G., J. Electrochem. Soc. 140 (8), 24272432, (1993).Google Scholar
[10] Cho, J.S.H., Kang, H.-K., Ryu, C., and Wong, S.S., IEEE Int'l Electron Device Meeting Tech. Digest, 265268 (1993).Google Scholar
[11] Chiang, C., Tzeng, S.-M., Raghavan, G., Villasol, R., Bai, G., Bohr, M., Fujimoto, H., and Fraser, D.B., Proc. VLSI Multilevel Interconnection Conf., 414420 (1994).Google Scholar
[12] Loke, A.L.S., Ryu, C., Yue, C.P., Cho, J.S.H., and Wong, S.S., IEEE Electron Device Lett. 17 (12), 549551 (1996).10.1109/55.545766Google Scholar
[13] Chen, I.-C., Holland, S.E., and Hu, C., IEEE Transactions on Electron Devices ED-32 (2), 413422 (1985).10.1109/T-ED.1985.21957Google Scholar
[14] Snow, E.H., Grove, A.S., Deal, B.E., and Sah, C.T., J. Applied Physics 36 (5), 16641673 (1965).10.1063/1.1703105Google Scholar
[15] Vrtis, R.N., Heap, K.A., Burgoyne, W.F., and Robeson, L.M., Proc. VLSI Multilevel Interconnection Conf., 620622 (1997).Google Scholar
[16] Tanabe, T., Kita, K., Maruyama, M., Sanechika, K., Kuroki, M., and Tamura, N., Proc. Int'l Interconnect Technology Conf., 220222 (1998).Google Scholar
[17] Townsend, P.H., Martin, S.J., Godschalx, J., Romer, D.R., Smith, D.W., Castillo, D., DeVries, R., Buske, G., Rondan, N., Froelicher, S., Marshall, J., Shaffer, E.O., and Im, J.-H., in Low-Dielectric Constant Materials III, edited by Case, C., Kohl, P., Kikkawa, T., and Lee, W.W. (Mater. Res. Soc. Proc. 476, Pittsburgh, PA, 1997), pp. 917.Google Scholar
[18] B.C. Auman in Low-Dielectric Constant Materials, edited by Lu, T.-M., Murarka, S.P., Kuan, T.-S., and Ting, C.H. (Mater. Res. Soc. Proc. 381, Pittsburgh, PA, 1995), pp. 1929.Google Scholar
[19] Mills, M., Dibbs, M., Martin, S., and Townsend, P., Proc. Dielectrics for VLSI/ULSI Multilevel Interconnection Conf., 269275 (1995).Google Scholar
[20] Piano, M.A., Kumar, D., and Cleary, T.J., in Low-Dielectric Constant Materials II1, edited by Case, C., Kohl, P., Kikkawa, T., and Lee, W.W. (Mater. Res. Soc. Proc. 476, Pittsburgh, PA, 1997), pp. 213218.Google Scholar
[21] Wong, S.S., Loke, A.L.S., Wetzel, J.T., Townsend, P.H., Vrtis, R.N., and Zussman, M.P., in Low-Dielectric Constant Materials IV, edited by Chiang, C., Ho, P.S., Lu, T.-M., and Wetzel, J.T. (Mater. Res. Soc. Proc. 511, Pittsburgh, PA, 1998), pp. 317327.Google Scholar
[22] LeGoues, F.K., Silverman, B.D., and Ho, P.S., J. Vac. Sci. Technology A6 (4), 22002204 (1988).10.1116/1.575011Google Scholar
[23] Faupel, F., Strunskus, T., Kiene, M., Thran, A., Bechtolsheim, C. v., and Zaporojtchenko, V., in Low-Dielectric Constant Materials IV, edited by Chiang, C., Ho, P.S., Lu, T.-M., and Wetzel, J.T. (Mater. Res. Soc. Proc. 511, Pittsburgh, PA, 1998), pp. 1526.Google Scholar
[24] Samuelson, G. and Lytle, S., J. Electrochem. Soc. 131 (11), 27172720 (1984).10.1149/1.2115390Google Scholar
[25] Snow, E.H. and Deal, B.E., J. Electrochem Soc. 113 (3), 263269 (1966).10.1149/1.2423929Google Scholar
[26] Loke, A.L.S., Wetzel, J.T., Ryu, C., Lee, W.-J., and Wong, S.S., Symp. on VLSI Technology Digest of Tech. Papers, 2627 (1998).Google Scholar
[27] Raghavan, G., Chiang, C., Anders, P.B., Tzeng, S.-M., Villasol, R., Bai, G., Bohr, M., and Fraser, D.B., Thin Solid Films 262, 168176 (1995).10.1016/0040-6090(95)05839-7Google Scholar
[28] Kim, S.U., Cho, T., and Ho, P., Extended Abstracts Int'l Conf. Solid State Devices and Materials, 268269 (1998).Google Scholar