Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T20:57:45.176Z Has data issue: false hasContentIssue false

Expanding thermal plasma for low-k dielectrics deposition

Published online by Cambridge University Press:  01 February 2011

M. Creatore
Affiliation:
Equilibrium and Transport in Plasmas, Department of Applied Physics Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands
Y. Barrell
Affiliation:
Equilibrium and Transport in Plasmas, Department of Applied Physics Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands
W.M.M. Kessels
Affiliation:
Equilibrium and Transport in Plasmas, Department of Applied Physics Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands
M.C.M. van de Sanden
Affiliation:
Equilibrium and Transport in Plasmas, Department of Applied Physics Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands
Get access

Abstract

As the need for low-k dielectrics in the ULSI technology becomes urgent, the research primarily focuses on the deposition of novel materials with appropriate electrical properties and on the challenges concerning their integration with subsequent processing steps. In this framework we introduce the expanding thermal plasma as a novel remote technique for the deposition of low-k carbon-doped silicon dioxide films from argon/hexamethyldisiloxane/oxygen mixtures. We have obtained k values in the range 2.9-3.4 for films characterized by acceptable mechanical properties (hardness of 1 GPa).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] MRS Bulletin 22(10) (1997)Google Scholar
[2] Semiconductor International, June 2002 Google Scholar
[3] Kim, J.Y., Hwang, M.S., Kim, Y.H., Kim, H.J., Lee, Y., J. Appl. Phys. 90, 2469 (2001).Google Scholar
[4] Gielen, J.W.A.M., Kessels, W.M.M., Sanden, M.C.M. van de, Schram, D.C., J. Appl. Phys. 82, 2643 (1997).Google Scholar
[5] Gielen, J.W.A.M., Sanden, M.C.M. van de, Schram, D.C., Appl. Phys. Lett. 69, 152 (1996).Google Scholar
[6] Sanden, M.C.M. van de, Severens, R.J., Kessels, W.M.M., Meulenbroeks, R.F.G., Schram, D.C., J. Appl. Phys. 84, 2426 (1998).Google Scholar
[7] Creatore, M., Hest, M.F.A.M. van, Benedikt, J., Sanden, M.C.M. van de, MRS Proc. 715, 101 (2002).Google Scholar
[8] Sanden, M.C.M. van de, Regt, J.M. de, Schram, D. C., Plasma Sources Sci. Technol. 3, 511 (1994).Google Scholar
[9] Busch, K. W., Busch, M. A. (Eds.), “Cavity Ring Down Spectroscopy: An Ultratrace-Absorption Measurement Technique” (American Chemical Society, 1999)Google Scholar
[10] Engeln, R., Letourneur, K.G.Y., Boogaarts, M.G.H., van de Sanden, M.C.M., Schram, D.C., Chem. Phys. Lett. 310, 405 (1999).Google Scholar
[11] Creatore, M., Kilic, M., O'Brien, K., Groenen, R., Sanden, M.C.M. van de, Thin Solid Films 427, 137 (2003).Google Scholar
[12] Graaf, A. de, Hest, M.F.A.M. van, Sanden, M.C.M. van de, Letourneur, K.G. Y., Schram, D.C., Appl. Phys. Lett. 74, 2927 (1999).Google Scholar