Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T04:31:08.638Z Has data issue: false hasContentIssue false

Fabrication of SERS Active Substrates by Nanoimprint Lithography

Published online by Cambridge University Press:  01 February 2011

Kebin Li
Affiliation:
kebin.Li@cnrc-nrc.gc.ca, Industrial Materials Institute, Functional NanoMaterials, 75, de Mortagne, Boucherville, Québec, Canada, J4B 6Y4, Boucherville, J4B 6Y4, Canada
Bo Cui
Affiliation:
Bo.cui@cnrc-nrc.gc.ca, National Research Council, Canada, Industrial Materials Institute, 75, de Mortagne, Boucherville, J4B 6Y4, Canada
Liviu Clime
Affiliation:
liviu.clime@cnrc-nrc.gc.ca, National Research Council, Canada, Industrial Materials Institute, 75, de Mortagne, Boucherville, J4B 6Y4, Canada
Teodor Veres
Affiliation:
Teodor.veres@cnrc-nrc.gc.ca, National Research Council, Canada, Industrial Materials Institute, 75, de Mortagne, Boucherville, J4B 6Y4, Canada
Get access

Abstract

A method for low-cost fabrication of SERS substrates in rapid and reproducible way based on nanoimprint lithography (NIL) method has been developed. The SERS enhancement for detection of Rhodamine 6G molecules is demonstrated on two model nanostructures comprising either Au nano-crescents or Ag nano-wells fabricated by this method. Numerical simulations based on discrete dipole approximation (DDA) method show that the observed enhancement of the SERS signal for the given geometries originates in hot-spots localized at the tips of the nanocrescent. For the nanowell, the hotspots are mainly localized inside the cavity, on the side of the nanodonut, or at the edge of the bottom nanodisc when it is excited by a laser at the wavelength of 785 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Adrian, F.J., J. Chem. Phys., 77, 5302 (1982)Google Scholar
2 Heller, E., Sundberg, E. and Tannor, D., J. Phys. Chem., 86, 1822 (1982).Google Scholar
3 Lombardi, J.R. et al. , J. Chem.Phys., 84, 4174 (1986).Google Scholar
4 Persson, B.N.J., Chem. Phys. Lett., 82, 561(1981).Google Scholar
5 Persson, B.N.J., Zhao, K., and Zhang, Z., Phys. Rev. Lett. 96, 207401 (2006)Google Scholar
6 Kneipp, K. et al. , Phys. ReV. Lett., 78, 1667 (1997).Google Scholar
7 Wang, S. et al. , Nano Letters, 7, 1076 (2007).Google Scholar
8 Anderson, N.B., A., ; Novotny, L., J. Opt. A 8, S227 (2006).Google Scholar
9 Babadjanyan, A.J., Margaryan, N.L., and Nerkararyan, K.V., J. Appl.Phys., 87, 3785 (2000).Google Scholar
10 Stockman, M.I., Phys. ReV. Lett., 93, 137404 (2004).Google Scholar
11 Gramotnev, D.K., J. Appl. Phys., 98,104302 (2005).Google Scholar
12 Gramotnev, D.K. and K.C. Vernon, Appl. Phys. B 86,7 (2007).Google Scholar
13 Nerkararyan, K.V., Phys. Lett. A, 237,103 (1997).Google Scholar
14 Pile, D.F.P. and Gramotnev, D.K., Appl. Phys. Lett., 89, 041111 (2006).Google Scholar
15 Su, K. et al. , J.Phys. Chem. B. 110, 3964 (2006).Google Scholar
16 Jensen, T.R. et al. , J. Phys. Chem. B 104, 10549 (2000).Google Scholar
17 Chen, J. et al. , Nano Lett., 5,473 (2005).Google Scholar
18 Gang, L.L. et al. , Advanced Materials, 17, 2683 (2005).Google Scholar
19 Lu, Y. et al. , Nano Letter, 5, 119 (2005).Google Scholar
20 Rochholz, H., Bocchio, N., and Kreiter, M., New Journal of Physics, 9, 53 (2007).Google Scholar
21 Dixon, M.C. et al. , Langmuir, 23, 2414 (2007).Google Scholar
22 Qian, L.H. et al. , Appl.Phys.Lett., 90, 153120 (2007).Google Scholar
23 Kucheyev, S.O. et al. , Appl.Phys.Lett., 89, 053102 (2006).Google Scholar
24 Zhou, Q. et al. , J. Physc. Chem. C, 111, 514 (2007).Google Scholar
25 Lesuffleur, A. et al. , J. Physc. Chem. C, 111, 2347 (2007).Google Scholar
26 Brolo, A.G. et al. , Nano Lett., 4, 2015 (2004).Google Scholar
27 Cui, B., Veres, T., Microelectronic Engineering, 84, 1544 (2007)Google Scholar
28 Hildebrandt, P. and Stockburger, M., J. Phys. Chem., 88, 5935 (1984).Google Scholar
29 Li, K. et al. , (in preparation ).Google Scholar
30 Yurkin, M.A. and Hoekstra, A.G., J. Quant. Spectrosc. Radiat. Transf., 106, 558 (2007).Google Scholar
31 Yurkin, M.A., Maltsev, V.P., and Hoekstra, A.G., J. Quant. Spectrosc. Radiat. Transf., 106, 546 (2007).Google Scholar
32 Johnson, P.B. and Christy, R.W., Phys. Rev. B, 6, 4370 (1972).Google Scholar
33 Li, K. et. al., (in preparation)Google Scholar