Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T10:42:38.676Z Has data issue: false hasContentIssue false

Fatigue Behavior of Scs-6/Titanium/Titan1ium Aluminide Hybrid Laminated Composite

Published online by Cambridge University Press:  10 February 2011

P. C. Wang
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
Y. C. Her
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
J. -M. Yang
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
Get access

Abstract

The fatigue behavior of the SCS-6 silicon carbide fiber-reinforced Ti-6Al-4V/Ti-25Al- 10Nb hybrid laminated composite was investigated at room temperature. The accumulation of fatigue damage in the form of matrix cracking was measured as a function of loading cycles and applied stress levels. The residual stiffness and residual tensile strength of the post-fatigued specimens were determined. The comparison of the crack growth behavior of the hybrid composite with both the SCS-6/Ti-6-4 and SCS-6/Ti-25-10 composites will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lipsitt, H. A., in High-Temperature Ordered Intermetallic Alloys I, Vol.39, edited by Koch, C.C., Liu, C. T., and Stoloff, N. S. (Material Research Society, 1985), p. 351.Google Scholar
2. Jeng, S.M. and Yang, J.-M., J. Mater. Sci. 27, 53575364 (1992).Google Scholar
3. Ritchie, R. O., Yu, W.K., and Bucci, R. J., Engg. Fract. Mech. 32 (3), 361377, (1989).Google Scholar
4. Lin, C.T., Kuo, P.K., and Yang, F.S., Composites 22 (2), 135141, (1991).Google Scholar
5. Freischmidt, G., Coutts, R. S. P., and Janardhana, M. N., J. Mater. Sci. letts. 13, 10271031, (1994).Google Scholar
6. Chawla, K. K. and Liaw, P. K., J. Mater. Sci. 14, 21432150, (1979).Google Scholar
7. Sandovsky, J., Kovove Materialy 25 (6), 749756, (1987).Google Scholar
8. Madhukar, M. S., Fared, A., Awerbuch, J., and Kaczak, M. J., in High Temperature/High Performance Composites, edited by Lemkey, F. D., Fishman, S. G., Evans, A. G., and Strife, J. R. (Materials Research Society, Vol.120), p. 121–8, (1988).Google Scholar
9. Bakuckas, J. G. and Johnson, W. S., J. Comp. Tech. Res. 15 (3), 242255, (1993)Google Scholar
10. Bhatt, R. T. and Grimes, H. H., Metall. Trans 13A, Nov. 19331938, (1982).Google Scholar
11. Jeng, S.M., Yang, C.J., Yang, J.-M., Rosenthal, D. G., and Goebel, J. in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B., and McMekking, R., (Materials Research Society Vol.194), p. 279, (1990).Google Scholar
12. DeLuca, D. P., Cowles, B. A., Haake, F. K., and Holland, K. P., Fatigue and Fracture of Titanium Aluminides, (Materials Laboratory, Wright Research and Development Center, Air Force Systems Command), p. 33, 133, (1990).Google Scholar
13. Wang, P.C., Jeng, S.M., and Yang, J.-M., Mater. Sci. & Eng. A200, 173180, (1995).Google Scholar
14. Wang, P.C., Jeng, S.M., and Yang, J.-M., Acta Metall. et Mater. 1996 in press.Google Scholar
15. Cox, B. N., Mech. Mater. 15, 8798, (1993).Google Scholar
16. Wang, P.C. and Yang, J.-M., submitted to Metall. Trans. A.Google Scholar