Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T14:26:39.562Z Has data issue: false hasContentIssue false

First Principles Study of Size Effect in BaTiO3 Ultrathin Films

Published online by Cambridge University Press:  01 February 2011

Bo-Kuai Lai
Affiliation:
Physics Department, University of Arkansas, Fayetteville, Arkansas 72701
Igor Kornev
Affiliation:
Physics Department, University of Arkansas, Fayetteville, Arkansas 72701
Laurent Bellaiche
Affiliation:
Physics Department, University of Arkansas, Fayetteville, Arkansas 72701
Greg Salamo
Affiliation:
Physics Department, University of Arkansas, Fayetteville, Arkansas 72701
Get access

Abstract

Properties and phase transition behaviors of ferroelectric thin films that are different from that of their bulk form is usually referred to as size effect. A first-principles-based scheme is used to investigate the effects of four important factors contributing to the size effects in epitaxial (001) BaTiO3 ultrathin films: misfit strain, existence of surface, film thickness, and electrical boundary conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Scott, J. F., Annu. Rev. Mater. Sci. 28, 79 (1998).Google Scholar
2 Dimos, D. and Mueller, C. H., Annu. Rev. Mater. Sci. 28, 397 (1998).Google Scholar
3 Drezner, Y. and Berger, S., J. Appl. Phys. 94 (10), 6774 (2003).Google Scholar
4 Yoneda, Y., Okabe, T., Sakaue, K., and Terauchi, H., J. Appl. Phys. 83, 2458 (1998).Google Scholar
5 Kang, B. S., Yoon, J.-G., Song, T. K., Seo, S., So, Y. W., and Noh, T. W., Jpn. J. Appl. Phys. 41, 5281 (2002).Google Scholar
6 Lai, B.-K., Kahn, H., Phillips, S. M., and Heuer, A. H., Ferroelectrics 306, 221 (2004).Google Scholar
7 Shaw, T. M., Trolier-McKinstry, S., and McIntyre, P. C., Annu. Rev. Mater. Sci. 30, 263 (2000).Google Scholar
8 Pertsev, N. A., Zembilgotov, A. G., and Tagantsev, A. K., Phys. Rev. Lett. 80, 1988 (1998).Google Scholar
9 Koukhar, V. G., Pertsev, N. A., and Waser, R., Phys. Rev. B 64, 214103 (2001).Google Scholar
10 Dieguez, O., Tinte, S., Antons, A., Bungaro, C., Neaton, J. B., Rabe, K. M., and Vanderbilt, D., Phys. Rev. B 69, 212101 (2004).Google Scholar
11 Junquera, J. and Ghosez, P., Nature 422, 506 (2003).Google Scholar
12 Kornev, I., Fu, H., and Bellaiche, L., Phys. Rev. Lett. 93, 196104 (2004).Google Scholar
13 Lai, B.-K., Kornev, I. A., Bellaiche, L., and Salamo, G. J., Appl. Phys. Lett. 86, 132904 (2005).Google Scholar
14 Zhong, W., Vanderbilt, D., and Rabe, K. M., Phys. Rev. B 52, 6301 (1995).Google Scholar
15 Iniguez, J. and Vanderbilt, D., Phys. Rev. Lett. 89, 115503 (2002).Google Scholar
16 Ghosez, Ph. and Rabe, K. M., Appl. Phys. Lett. 76, 2767 (2000).Google Scholar