Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T13:21:13.768Z Has data issue: false hasContentIssue false

First-Principles Modeling for Current-Voltage Characteristics of Resistive Random Access Memories

Published online by Cambridge University Press:  20 June 2013

Takehide Miyazaki
Affiliation:
Nanosystem Research Institute, National Institute for Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Hisao Nakamura
Affiliation:
Nanosystem Research Institute, National Institute for Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Kengo Nishio
Affiliation:
Nanosystem Research Institute, National Institute for Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Hisashi Shima
Affiliation:
Nanoelectronics Research Institute, National Institute for Advanced Industrial Science and Technology, AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
Hiroyuki Akinaga
Affiliation:
Nanoelectronics Research Institute, National Institute for Advanced Industrial Science and Technology, AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
Yoshihiro Asai
Affiliation:
Nanosystem Research Institute, National Institute for Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Get access

Abstract

We present results of first-principles non-equilibrium Green’s function calculations for current-voltage (IV) characteristics of the electrode/HfO2/electrode model systems. In order to investigate the effect of the electrode materials on the IV characteristics, we considered two transition metals for electrode, Ta and W, which are both body-centered-cubic elemental metals but have different valence numbers. We simulated the ON state by placing oxygen vacancies in the HfO2 layer while the OFF state was modeled with HfO2 without oxygen vacancies. At the OFF state, no electric current flowed for -1 V up to +1 V, as expected. At the ON state, however, we found that the absolute current for the Ta electrode was twice as large as that for the W electrode. The analysis of the IV characteristics shows that the electronic coupling between Ta and HfO2 is substantially stronger than that between W and HfO2. Our study demonstrates the importance of the matching between electrode and insulator materials to achieve a high ON- to OFF-current ratio in ReRAMs at a low bias.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akinaga, H. and Shima, H., Proc. IEEE 98, 2237 (2010).CrossRefGoogle Scholar
Bruchhaus, R. and Waser, R., in Thin Film Metal-Oxides: Fundamentals and Applications in Electronics and Energy, Springer Science+Business Media, LLC 2010, p.131.CrossRefGoogle Scholar
Sawa, A., Mater. Today 11, 28 (2006).CrossRefGoogle Scholar
Lee, H. D., Magyari-Koepe, B., and Nishi, Y., Phys. Rev. B 81, 193202 (2010).CrossRefGoogle Scholar
Magyari-Koepe, B. et al. ., Nanotechnology 22, 254029 (2011).CrossRefGoogle Scholar
Magyari-Koepe, B., Park, S.-G., Lee, H. D., and Nishi, Y., J. Mater. Sci. 47, 7498 (2012).CrossRefGoogle Scholar
Chen, Y. Y. et al. ., Appl. Phys. Lett. 100, 113513 (2012).CrossRefGoogle Scholar
Oka, K. et al. ., J. Am. Chem. Soc. 134, 2535 (2012).CrossRefGoogle Scholar
Kishi, H. et al. ., Jpn. J. Appl. Phys. 50, 071101 (2011).CrossRefGoogle Scholar
Nakamura, H. et al. ., J. Phys. Chem. C115, 19931 (2011).Google Scholar
Baik, H. S., Kim, M., Park, G.-S, Song, S. A., Varela, M., Franceschetti, A., Pantelides, S. T., and Pennycook, S. J., Appl. Phys. Lett. 85, 672 (2004).CrossRefGoogle Scholar
Fonseca, L. R. C. and Knizhnik, A. A., Phys. Rev. B 74, 195304 (2006).CrossRefGoogle Scholar
Xiong, K., Robertson, J., Pourtois, G., Petry, J., and Muller, M., J. Appl. Phys. 104, 074501 (2008).CrossRefGoogle Scholar
Prodhomme, P.-Y., Fontaine-Vive, F., Van Der Geest, A., Blaise, P., and Even, J., Appl. Phys. Lett. 99, 022101 (2011).CrossRefGoogle Scholar
Jang, J. H., Jung, H.-S., Kim, J. H., Lee, S. Y., Hwang, C. S., and Kim, M., J. Appl. Phys. 109, 023817 (2011).Google Scholar
Sowinska, M., Bertaud, T., Walczyk, D., Thiess, S., Schubert, M. A., Lukosius, M., Drube, W., Walczyk, Ch., and Schroeder, T., Appl. Phys. Lett. 100, 233509 (2012).CrossRefGoogle Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I. et al. ., J. Phys.: Condens. Matter 21, 395502 (2009). See http://www.quantum-espresso.org.Google Scholar
Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
Laasonen, K., Pasquarello, A., Car, R., Lee, C. and Vanderbilt, D., Phys. Rev. B 47, 10142 (1993).CrossRefGoogle Scholar
Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5408 (1981).Google Scholar
Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., and Sánchez-Portál, D., J. of Phys.: Condens. Matter 14, 2745 (2001).Google Scholar
Helgaker, T., Jorgensen, P., Olsen, J., Molecular Electronic-Structure Theory. (John Wiley & Sons, 2000).CrossRefGoogle Scholar
Sancho, M. P. L., Sancho, J. M. L., and Rubio, J., J. Phys. F: Met. Phys. 14, 1205 (1984).CrossRefGoogle Scholar
Datta, S., Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).CrossRefGoogle Scholar
De Stefano, F., Houssa, M., Afanas’ev, V. V., Kittl, J., Jurczak, M., and Stesmans, A., Thin Solid Films 533, 15 (2013).CrossRefGoogle Scholar
Momma, K. and Izumi, F., J. Appl. Crystalogr. 41, 653 (2008).CrossRefGoogle Scholar