Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T09:43:32.237Z Has data issue: false hasContentIssue false

Formation of High Quality Oxynitride Gate Dielectrics by High Pressure Thermal Oxidation of Si in NO

Published online by Cambridge University Press:  10 February 2011

S. C. Song
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78712
C. H. Lee
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78712
H. F. Luan
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78712
D. L. Kwong
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78712
M. Gardner
Affiliation:
Advanced Micro Devices, Austin, TX 78723
J. Fulford
Affiliation:
Advanced Micro Devices, Austin, TX 78723
M. Allen
Affiliation:
Advanced Micro Devices, Austin, TX 78723
J. Bloom
Affiliation:
GaSonics International, San Jose, CA 95134
R. Evans
Affiliation:
GaSonics International, San Jose, CA 95134
Get access

Abstract

In this paper, we report a novel low thermal budget process (<800°C) for engineered ultra thin oxynitride dielectrics with high nitrogen concentration (>5% a.c.) using vertical high pressure (VHP) process. VHP grown oxynitride films show >1 OX lower leakage current, higher drive current and superior hot-carrier reliability compared to control SiO2 of identical thickness (Tox,eq) grown by RTP in O2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lee, D., et al. , J. Vac. Sci. Tech. B 13, 1995, p.1778 Google Scholar
[2] Okada, Y., et al. , VLSI Symp., p. 105, 1994 10.1378/chest.105.2.631Google Scholar
[3] Hori, T., IEEE Trans. Electron Devices, vol. 37, p. 2058, 1990 10.1109/16.57169Google Scholar
[4] Momose, H. S., et al. , IEEE Trans. Electron Devices, vol. 41, p. 546, 1994 10.1109/16.278508Google Scholar
[5] Song, S. C., et al. , IEDM Tech. Dig., p. 373, 1998 Google Scholar
[6] Luan, H. F., et al. , IEDM Tech. Dig., p. 609, 1998 Google Scholar
[7] Patrikar, R. M., et al. , IEEE Electron. Device Lett., vol. 14, p. 530, 1993 10.1109/55.258005Google Scholar
[8] Ogata, T., et al. , IEDM Tech Dig, p.597, 1998 Google Scholar
[9] Kaga, T., et al. , IEEE Trans. Electron Devices, vol. 35, p. 929, 1988 10.1109/16.3347Google Scholar
[10] Song, S. C., et al. , ESSDERC, 1998 Google Scholar