Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T06:16:01.702Z Has data issue: false hasContentIssue false

Formation of Nickel Silicides on Ion-Amorphized Silicon

Published online by Cambridge University Press:  25 February 2011

B. Mohadjeri
Affiliation:
Royal Institute of Technology, Solid State Electronics, P.O. Box 1298, S-164 28 Kista-Stockholm, SWEDEN
J. Linnros
Affiliation:
Swedish Institute of Microelectronics, P. O. Box 1084, S-164 21 Kista-Stockholm, SWEDEN
B. G. Svensson
Affiliation:
Royal Institute of Technology, Solid State Electronics, P.O. Box 1298, S-164 28 Kista-Stockholm, SWEDEN
M. ÖStling
Affiliation:
Royal Institute of Technology, Solid State Electronics, P.O. Box 1298, S-164 28 Kista-Stockholm, SWEDEN
S. Johanssons
Affiliation:
Uppsala University, Materials Science Division, P.O. Box 534, S-751 21 Uppsala, SWEDEN
F. M. D'Heurle
Affiliation:
Royal Institute of Technology, Solid State Electronics, P.O. Box 1298, S-164 28 Kista-Stockholm, SWEDEN IBM Research Center, PO 218, Yorktown Heights, NY 10598, USA
Get access

Abstract

The formation of NiSi and NiSi2 upon annealing of an ion-amorphized Ni/Si structure has been studied by various surface analytical techniques to characterize the morphology, stoichiometry and interface sharpness of the NiSi2 layer. In comparison with reactions of nickel on crystalline silicon (c-Si), sharpening 0ofthe NiSi2/C-Si interface is obtained for appropriate amorphization depths. Moreover, the surface roughness of the NiSi2 films is significantly reduced by implantation. The NiSi2 formation temperature is, however, not reduced as observed for structures with nickel deposited on amorphous silicon prepared by evaporation. This dissimilarity can be explained by an unexpected low crystallization temperature or the ion-amorphized structure, where Ni-ennanced solid phase epitaxy occurs at a temperature as low as 425°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mayer, J. W. and Lau, S. S., Electronic Materials Science, (Mc Milian, New York, 1990).Google Scholar
[2] Ishiwara, H., Saitoh, S., and Hikosaka, K., Jpn. J. Appl. Phys. 20, 843 (1981).Google Scholar
[3] Lien, C. -D., Nicolet, M. -A., and Lau, S. S., Phys. Stat. Sol. (a) 81, 123 (1984).Google Scholar
[4] d'Heurle, F. M., J. Mater. Res. 3, 167 (1988).Google Scholar
[5] Mohadjeri, B., Linnros, J., Svensson, B. G., and Östling, M., Phys. Rev. Lett. 68, 1872 (1992).CrossRefGoogle Scholar
[6] Olson, G. L. and Roth, J. A., Materials Science Reports 3 (North-Holland, Amsterdam, 1988) pp. 178.Google Scholar
[7] Chiù, K. C. R., Poate, J. M., Rowe, J. E., Sheng, T. T., and Cullis, A. G., Appl. Phys. Lett. 38, 988 (1981).Google Scholar
[8] Xiao, Z. G., Honeycutt, J. W., and Rozgonyi, G. A., Mat. Res. Soc. Symp. Proc. 202, 259 (1991).Google Scholar
[9] Hayzelden, C., Batstone, J. L. and Cammarata, R. C., Appl. Phys. Lett. 60, 225 (1992).CrossRefGoogle Scholar