Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T21:12:59.611Z Has data issue: false hasContentIssue false

Formation of Silk Monolayers

Published online by Cambridge University Press:  15 February 2011

Wayne S. Muller
Affiliation:
Biotechnology Division, US Army Natick Research, Development and Engineering Center, Natick, MA 01760
Lynne A. Samuelson
Affiliation:
Biotechnology Division, US Army Natick Research, Development and Engineering Center, Natick, MA 01760
Stephen A. Fossey
Affiliation:
Biotechnology Division, US Army Natick Research, Development and Engineering Center, Natick, MA 01760
David L. Kaplan
Affiliation:
Biotechnology Division, US Army Natick Research, Development and Engineering Center, Natick, MA 01760
Get access

Abstract

Cast silk membranes exhibit useful properties. However, there is limited control over the molecular architecture in these structures. The Langmuir-Blodgett technique can enhance the control of the membrane structure and allow improved control over membrane properties. We have formed natural silk monolayers using the Langmuir technique. Silk fibroin, regenerated from Bombvx mori cocoons, formed stable monolayers evident from pressure/area isotherms. Multilayers of the silk fibroin monolayers were deposited on a number of substrates and characterized. Transmission Electron Microscopy (TEM) and ellipsometry data provide basic information about the physical characteristics of the monolayer. Preliminary analysis of electron diffraction data of the monolayer indicate polycrystalline structure, consistent with the known structure of silk. Infrared spectrometric analysis of the monolayer using Attenuated Total Reflectance (ATR) gave wavenumbers for Amide I, II, III and V bands which compare with the silk II conformation reported for cast silk membranes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kuzuhara, A., Asakura, T., Tomoda, R., Matsunaga, T., J. Biotechnology 5, 199 (1987).Google Scholar
2. Asakura, T., Yoshimizu, H., Kuzuhara, A., Matsunaga, T. J., J. Seric. Sci. Jpn. 57, 203 (1988).Google Scholar
3. Demura, M., Asakura, T., Biotechnol. Bioeng. 33, 598 (1989).Google Scholar
4. Demura, M., Asakura, T., Kurso, T., Biosensors 4, 361 (1989).Google Scholar
5. Demura, M., Asakura, T., Nakamura, E., Tamura, H., Journal of Biotechnol. 10, 113 (1989).Google Scholar
6. Grasset, L., Cordier, D., Ville, A., Process Biochem. 14, 2 (1979).Google Scholar
7. Asakura, T., Kanetake, J., Demura, M., Poly-Plast. Technol. Eng. 28, 453 (1989).Google Scholar
8. Yoshimizu, H., Asakura, T., Journal of Applied Polymer Science 40, 127 (1990).Google Scholar
9. Magoshi, J., Magoshi, Y., Nakamura, S., Journal of Applied Polymer Science, Appl. Polym. Symp. 41, 187 (1985).Google Scholar
10. Magoshi, J., Kamiyama, S., Nakamura, S., Proceedings of the 7th International Wool Textile Research Conference, Tokyo 1, 337 (1985).Google Scholar
11. Kaplan, D.L., Lombardi, S.J., Muller, W.S., Fossey, S., Biomaterials Novel Materials from Biological Sources, edited by Byrom, D. (Stockton Press, New York, 1991), p. 1.Google Scholar
12. Lucas, F., Shaw, J.T.B., Smith, S.G., Adv. Prot. Chem. 13, 107 (1958).Google Scholar
13. Lucas, F., Nature 210, 952 (1966).Google Scholar
14. Minoura, N., Tsukada, M., Masanobu, N., Biomaterials 11, 430 (1990).Google Scholar
15. Calvert, P.D., Encyclopedia Materials Science and Engineering. Biological Macromolecules, (Pergamon Press, Oxford, 1988) p. 334.Google Scholar
16. Zemlin, J.C., Technical Report 69–29-CM (AD684333), US Army Natick Laboratories, Natick MA 1968.Google Scholar
17. Swart, R.M., Langmuir-Blodgett Films, edited by Roberts, G. (Plenum Press, New York, 1990) p. 273.Google Scholar
18. Marsh, R.E., Corey, R.B., Pauling, L., Biochim. Biophysics Acta 16, 1 (1955).Google Scholar
19. Fraser, R.D.B., MacRae, T.R., Conformation of Fibrous Proteins (Academic Press, New York, 1973).Google Scholar
20. Kaplan, D.L., Fossey, S., Viney, C., and Muller, W. in Hierarchically Structured Materials, edited by Aksay, I.A., Eric, Baer, Sarikaya, M., and Tirrell, D. (Mater. Res. Soc. Symp. Proc. 255, Pittsburgh, PA, 1992) pp. 1930.Google Scholar
21. Yoshimizu, H., Asakura, T., J. Appl. Poly. Sci. 40, 1745 (1990).Google Scholar
22. Asakura, T., Kuzuhara, A., Tabeta, R., Saito, H., Macromolecules 18, 1841 (1985).Google Scholar
23. Minoura, N., Masuhiro, T., Masanobu, N., Polymer 31, 265 (1990).Google Scholar