Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T23:58:38.732Z Has data issue: false hasContentIssue false

From Ceramics to Superconductors: Rapid Materials Synthesis by Solid-State Metathesis Reactions

Published online by Cambridge University Press:  25 February 2011

Randolph E. Treece
Affiliation:
University of California, Los Angeles, Dept. of Chemistry and Biochemistry and Solid State Science Center, 405 Hilgard Ave., Los Angeles, CA 90024–1569.
Edward G. Gillan
Affiliation:
University of California, Los Angeles, Dept. of Chemistry and Biochemistry and Solid State Science Center, 405 Hilgard Ave., Los Angeles, CA 90024–1569.
Richard M. Jacubinas
Affiliation:
University of California, Los Angeles, Dept. of Chemistry and Biochemistry and Solid State Science Center, 405 Hilgard Ave., Los Angeles, CA 90024–1569.
John B. Wiley
Affiliation:
University of California, Los Angeles, Dept. of Chemistry and Biochemistry and Solid State Science Center, 405 Hilgard Ave., Los Angeles, CA 90024–1569.
Richard B. Kaner
Affiliation:
University of California, Los Angeles, Dept. of Chemistry and Biochemistry and Solid State Science Center, 405 Hilgard Ave., Los Angeles, CA 90024–1569.
Get access

Abstract

The preparation of materials from gas and liquid phase precursor reactions is well documented. However, solid-state precursor routes have remained largely unexplored. This synthetic void led us to develop rapid (< 2 s), solid-state metathesis (exchange) reactions with a very broad range of synthetic applications. An example is the self-propagating reaction:

where the Nal is simply washed away with water. Analogous reactions allow the preparation of carbides, suicides, chalcogenides (O, S, Se, and Te), and pnictides (N, P, As, and Sb), of main-group, transition-, and rare-earth metals. These methods can also be exploited to produce mixed-metal and mixed-nonmetal solid solutions.

To gain insight into some of the mechanistic factors involved in these reactions, such as initiation, nucleation, and propagation, we have employed a variety of physical characterization methods. This paper will review the range of materials accessible by our synthetic approaches, as well as the control of product crystallinity, phase, and homogeneity through the optimization of reaction conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pilling, N. B. and Bcdworih, R. E., J. Inst. Metals 1, 529 (1923).Google Scholar
2. (a) Calm, R. W., Adv. Mater. 2, 314 (1990).Google Scholar
(b) Merzhanov, A. G. and Borovinskaya, I. P., Doki. Akad. Nauk SSSR (Engl. transi.) 204, 429 (1972).Google Scholar
(c) Yi, H. C. and Moore, J. J., J. Mater. Sci. 25, 1159(1990).Google Scholar
3. Munir, Z. A. and Ansclmi-Tamburini, U., Mat. Sci. Reports 3, 111 (1989).Google Scholar
4. Wold, A., J. Chem. Ed. 57, 531 (1980).Google Scholar
5. Johnson, D. W. Jr, Amcr. Ceram. Soc. Bull. 60, 221 (1981).Google Scholar
6. Gillan, E. G., Trecce, R. E., Wiley, J. B., Kaner, R. B., presented at the American Chemical Society Pacific Conference on Chemistry and Spectroscopy, Anaheim, California, October 1991 (unpublished).Google Scholar
7. Trecce, R. E., Macala, G. S., Kaner, R. B., Chem. Matert 4, 9(1992).CrossRefGoogle Scholar
8. Trecce, R. E., Macala, G. S., Rao, L., Kaner, R. B., in preparation.Google Scholar
9. Gillan, E. G., Rao, L., Kaner, R. B., in preparation.Google Scholar
10. Kaner, R.; Bonncau, P.; Gillan, E.; Wiley, J.; Jarvis, R. Jr; Treece, R.; “Rapid Solid- State Synthesis of Refractory Materials”, U. S. Pat., filed 28 January 1991, Notice of Allowance 10 April 1991.Google Scholar
11. Treece, R. E. and Kaner, R. B., in preparation.Google Scholar
12. Jarvis, R. F. Jr, and Kaner, R. B., presented at the American Chemical Society Pacific Conference on Chemistry and Spectroscopy, Anaheim, California, October 1991 (unpublished).Google Scholar
13. Wilcy, J. B., Gillan, E. G., and Kaner, R. B., unpublished.Google Scholar
14. Bonneau, P. R., Shibao, R. K., and Kaner, R. B., Inorg. Chem. 29, 2511 (1990).Google Scholar
15. Bonncau, P. R., Jarvis, R. F. Jr, and Kaner, R. B., Nature 349, 510 (1991).CrossRefGoogle Scholar
16. Bonncau, P. R., PhD thesis, University of California, Los Angeles, 1991.Google Scholar
17. Bonncau, P. R., Wiley, J. B., and Kaner, R. B., Inorg. Synth., in press.Google Scholar
18. Bonncau, P. R., Jarvis, R. F. Jr, and Kaner, R. B., Inorg. Chem., in press.Google Scholar
19. Gillan, E. G., Rao, L., Jacubinas, R. M., and Kaner, R. B., presentation at the American Chemical Society Fall Meeting, Washington, DC, August 1992 (submitted).Google Scholar
20. Wiley, J. B. and Kaner, R. B., Science 255, 1093 (1992).Google Scholar
21. Treece, R. E., Macala, G. S., Bonncau, P. R., and Kaner, R. B., in preparation.Google Scholar
22. (a) Lide, D. R. Jr, Ed., JAN AF Thermochemical Tablesl 3rd ed. (American Chemical Society and American Institute of Physics, Inc.: New York, 1985).Google Scholar
(b) Weast, R. C., Ed., CRC, Handbook of Chemistry and Physics; 64th ed. (CRC Press: Boca Raton, Fl, 1983).Google Scholar
23. Kubaschcwski, O. and Alcock, C. B., Metallurgical Thermochemistry, 5th ed. (Pergamon Press Inc., New York, 1979).Google Scholar
24. Wells, A., Structural Inorganic Chemistry, 5th ed. (Claredon Press: Oxford, England, 1986).Google Scholar
25. van dc Graff, M. A. C. G. and Burggraff, A. J. in Advances in Ceramics II, edited by Claussen, N., Ruhle, M., and Heucr, A. (American Ceramics Society, Columbus, OH, 1984) pp 744–765.Google Scholar
26. Gillan, E. G. and Kaner, R. B., in preparation.Google Scholar