Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T00:46:34.800Z Has data issue: false hasContentIssue false

Growth of AlN Single Crystals

Published online by Cambridge University Press:  10 February 2011

Glen A. Slack*
Affiliation:
Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute Troy, NY 12180
Get access

Abstract

Aluminum nitride is a wurtzite structure III–V compound, although epitaxial layers of zincblende structure AIN have been made. AlN melts congruently at 2750°C with dissociation pressure of 9 atmospheres. Boules of AIN have been successfully grown by a sublimation-recondensation technique at 2300°C employing tungsten crucibles. Growth rates of 0.3 mm per hour were attained at 1 bar pressure of N2, and crystals up to 22 mm long have been grown. An analysis of the growth process shows that the 9.75eV dissociation energy of N2 is the limiting factor in the growth rate. The growth rate is predicted to depend on the N2 pressure, but no experiments in this area have yet been concluded. The most satisfactory crucible material found so far for growing AIN is single crystal tungsten.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Briegleb, F. and Geuther, A., Leibig's, Ann. d. Chem. Pharm. 123 228 (1862).Google Scholar
2. Richards, J. W., J. Ind. Eng. Chem. 5 335 (1913).Google Scholar
3. Serpek, O., Zeit. f angew. Chem. 27 41 (1914).Google Scholar
4. Fichter, F. and Oesterheld, G., Zeit. f Electrochem. 2150 (1915).Google Scholar
5. Kohn, J. A., Cotter, P. G., and Potter, R. A., Amer. Mineral. 41 355 (1956).Google Scholar
6. Ott, H., Zeit. f Physik 22 202 (1924).Google Scholar
7. Tiede, E., Thimann, M., and Sensse, K., Chem. Berichte 61 1568 (1928).Google Scholar
8. Taylor, K. M. and Lenie, C., J. Electrochem. Soc. 107 308 (1960).Google Scholar
9. Kleber, W. and Witzke, H.D., Zeit. Krist. 116 126 (1961).Google Scholar
10. Witzke, H. D., Phys. Status Solidi 2 1109 (1962).Google Scholar
11. Fischer, A., Ger. Patent 1,128,410 (1962).Google Scholar
12. Rabenau, A., in “Compound Semiconductors”, ed by Willardson, R. K. and Goering, H. L., Reinhold, New York, 1962, p. 174180.Google Scholar
13. Knippenberg, W.F., U.S. Patent 3,634,149, Jan. 11, 1972.Google Scholar
14. Pastrnak, J. and Roskovcova, L., Phys. Status Solidi 7 331 (1964).Google Scholar
15. Campbell, R. B. and Chang, H. C., Westinghouse, Pittsburgh, see Air Force Aero Propulsion Laboratory, Technical Report 67–23 (1967).Google Scholar
16. Kwabe, K., Tredgold, R. H., and Inuishi, Y., Electrical Engineer. Japan 87 62 (1967).Google Scholar
17. Cox, G. A., Cummins, D. O., Kawabe, K., and Tredgold, R., J. Phys. Chem. Solids 28 543 (1967).Google Scholar
18. Krukowska-Fulde, B. and Niemyski, T., Electron Technology 3 3 (1970).Google Scholar
19. Berezhkova, G. V., Tsvetkova, I. N., Zakharov, N. D., Rozhanskii, V. N., and Koryukin, V. I., Soy. Phys. Crystallog. 16 848 (1972).Google Scholar
20. Dugger, C. O., Air Force Cambridge Research Laboratories – Technical Report – 75–0486 (1975).Google Scholar
21. Armington, A. F., O'Connor, J. J., Weiner, J. R., and Marshall, R.C., A.F.C.R. Labs (1975), unpublished.Google Scholar
22. Ishii, T., Sato, T., and Iwata, M., Mineralogical Journal (Japan) 8 1 (1975).Google Scholar
23. Rutz, R.F., Appl. Phys. Letters 28 379 (1976).Google Scholar
24. Slack, G.A. and McNelly, T.F., J. Cryst. Growth 42 560 (1977).Google Scholar
25. Balkas, C.M., Sitar, Z., et al. Mater. Res. Soc. Sympos. Proc. 449 (1997).Google Scholar
26. Tanaka, T., Nakahata, S., Sogabe, K., Nakata, H., and Tobioka, M., Jap. J. Appl. Phys. 36 L1062 (1997).Google Scholar
27. Class, W., “An Aluminum Nitride Melting Technique”, NASA-CR-1171 (1968) [Chem. Abstr. 69 99062f (1968)].Google Scholar
28. Vinogradov, V. L., Kostanoviskii, A.V., and Kirillin, A.V., High Temp. - High. Press. 23 685 (1991) also High Temp. 30 599 (1992).Google Scholar
29. Salck, G. A. and McNelly, T. F., J. Cryst. Growth 34 263 (1976).Google Scholar
30. Youngman, R. A. and Harris, J. H., J. Am. Ceram. Soc. 73 3238 (1990).Google Scholar
31. Ishii, T., Sato, T., and Iwata, M., Denki Kagaku 38 429 (1970) [Chem. Abstr. 73 102737v (1970)].Google Scholar
32. Sato, T. and Iwata, M., Nippon Kagaku Kaishi 10 1869 (1973) [J. Chem. Soc. Japan].Google Scholar
33. Bolgar, A. S., Gordienko, S. P., Ryklis, E. A., and Fesenko, V. V., in “Khim. Fiz. Nitridov” ed. By G.V. Samsonov p. 151 (1968) [See Chem. Abstr. 71 34003j (1969)].Google Scholar
34. Dreger, L. H., Dadape, V. V., and Margrave, J. L., J. Phys. Chem. 66, p. 1556 (1962).Google Scholar
35. Blank, B. H., “The Kinetics of Vaporization of Aluminum Nitride and Magnesium Nitride”, PhD. Thesis, Univ. Calf., Berkeley (1965) Lawrence Radiation Laboratory [Dissertation Abstracts 65–13, 445].Google Scholar
36. Ambacher, O., Brandt, M. S., Dimitrov, R., Metzger, T., Stutzman, M., Fischer, R. A., Miehr, A., Bergmaier, A., and Dollinger, G., J. Vac. Sci. Technol. B14, p. 3532 (1996).Google Scholar
37. Dryburgh, P.M., J. Cryst. Growth 125 65 (1992).Google Scholar
38. Slack, G.A. and Bartram, S.F., J. Appl. Phys. 46 89 (1975).Google Scholar
39. Slack, G.A., J. Phys. Chem. Solids 34 321 (1973).Google Scholar