Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T15:30:20.467Z Has data issue: false hasContentIssue false

Growth of GaN Nanorods on (0001) Sapphire Substrates by Hydride Vapor Phase Epitaxy

Published online by Cambridge University Press:  01 February 2011

Hwa-Mok Kim
Affiliation:
Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715, Korea
Doo Soo Kim
Affiliation:
Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715, Korea
Young Wook Chang
Affiliation:
Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715, Korea
Deuk Young Kim
Affiliation:
Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715, Korea
Tae Won Kang
Affiliation:
Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715, Korea
Get access

Abstract

GaN nanorods were grown on (0001) sapphire substrates by hydride vapor phase epitaxy HVPE) through a self-assemble process. The nanorods were grown at high growth rate, with the c-axis maintained perpendicular to the substrate surface. The dependence of rod diameter and density on growth conditions was systematically investigated. The average diameter was minimized to 80-120 nm and the density of the GaN nanorods was 100×1012 rods/m2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Science 281, 956 (1998).Google Scholar
2. Nakamura, S., Mukai, T., Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
3. Han, W., Fan, S., Li, Q., Hu, Y., Science 277, 1287 (1997).Google Scholar
4. Han, W., Redlich, P., Ernst, F., Ruhle, M., Appl. Phys. Lett. 76, 652 (2000).Google Scholar
5. Chen, C. C., Yen, C. C., Adv. Mater. 12, 738 (2000).Google Scholar
6. Li, J. Y., Chen, X. L., Qiao, Z. Y., Cao, Y.G., Lan, Y. C., J. Cryst. Growth 213, 408 (2000).Google Scholar
7. Cheng, G. S., Zhang, L. D., Zhu, Y., Fei, G. T., Li, L., Appl. Phys. Lett. 75, 2455 (1999).Google Scholar
8. Yoshizawa, M., Kikuchi, A., Mori, M., Fujita, N., Kishino, K., Jpn. J. Appl. Phys. 36, L459 (1997).Google Scholar
9. Logan, R. A., Thurmond, C. D., J. Electrochem. Soc. 119, 1727 (1972).Google Scholar
10. Park, Y. J., Son, M. O., Kim, E. K., Min, S. K., J. Korean Phys. Soc. 32, 621 (1998).Google Scholar
11. Elwell, D., Feigelson, R. S., Simkins, M. M., Tiller, W. A., J. Cryst. Growth 66, 45 (1984).Google Scholar
12. Bethune, D. S., Kiang, C. H., Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R., Nature 363, 605 (1993).Google Scholar
13. Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zhou, B. S.,Zhou, W. Y., Zhao, R.A., Wang, G., Science 274, 1701 (1996).Google Scholar
14. Pan, Z. W., Xie, S. S., Chang, B. H., Wang, C. Y., Lu, L., Liu, W., Zhou, W. Y., Li, W. Z., Nature 394, 631 (1998).Google Scholar