Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T17:37:19.341Z Has data issue: false hasContentIssue false

Growth Structure, and Optical Properties of III-Nitride Quantum Dots

Published online by Cambridge University Press:  01 February 2011

Hadis Morkoç
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, USA
Arup Neogi
Affiliation:
North Texas University, Denton, Texas 76203
Martin Kuball
Affiliation:
University of Bristol, Bristol, BS8 1TL UK
Get access

Abstract

Quasi-zero-dimensional (0D) semiconductors have been the subject of considerable interest which is stemmed from their unique physical properties which in turn are conducive to devices such as low threshold lasers and light polarization insensitive detectors, in addition to exciting basic physical phenomena. A laboratory analogue of 0D systems is semiconductor quantum dots (QDs) wherein the electronic states are spatially localized and the energy is fully quantized, loosely similar to an atomic system, making it more stable against thermal perturbations. In addition, the electronic density of states near the band gap is higher than in 3D and 2D systems, leading to a higher probability for optical transitions. Furthermore, the electron localization may dramatically reduce the scattering of electrons by bulk defects and reduce the rate of non-radiative recombination. Semiconductor based and metal based dots have been produced, the former via self-assembly and also by lithographic methods in many II-VI, III-V, and group IV semiconductor. The aim of this paper is focused on III-Nitride based quantum dots covering their production and optical properties, as well as reporting on the GaN quantum dots produced by molecular beam epitaxy utilizing standard, ripening, metal spray followed by nitridation methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Strite, S.T. and Morkoç, H., “GaN, AlN, and InN: A Review,” J. Vacuum Science and Technology B10, 12371266 (1992).Google Scholar
2 Morkoç, H., Strite, S., Gao, G. B., Lin, M.E., Sverdlov, B., and Burns, M., “A Review of Large Bandgap SiC, III-V Nitrides, and ZnSe Based II-VI Semiconductor Structures and Devices,” J. Appl. Phys. Reviews 76(3), 1363 (1994).Google Scholar
3 Mohammad, S. N., Salvador, A., and Morkoç, H., “Emerging GaN Based Devices,” Proc. IEEE 83, 1306 (1995).Google Scholar
4 Mohammad, S. N. and Morkoç, H., “Progress and Prospects of Group III-V Nitride Semiconductors,” Progress in Quantum Electronics 20(5 and 6), 3617–525 (1996).Google Scholar
5 Ambacher, O., “Growth and Applications of Group III-Nitrides”, J. Phys. D: Appl. Phys. 31, 2653, (1998).Google Scholar
6 Morkoç, Hadis, Carlo, Aldo Di and Cingolani, R., “GaN-Based Modulation Doped FETs and UV Detectors”, Solid State Electronics, 46(2), 157, (2002).Google Scholar
7 Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., “GaN: Processing, Defects, and Devices”, J. Appl. Phys. 86, 1 (1999).Google Scholar
8 Gérard, J. M., Cabrol, O., and Sermage, B., Appl. Phys. Lett., 68, 3123 (1996).Google Scholar
9 Arakawa, Y. and Sakaki, H., Appl. Phys. Lett., 40, 939 (1982).Google Scholar
10 Huang, D., Reshchikov, M. A. and Morkoç, H., “Growth, Structure, and Optical Properties of III-Nitride Quantum Dots”, in “Quantum Dots”, International Journal of High Speed Electronics Vol. 25, No. 1 pp. 79110. (March 2002), Eds. Borovitskaya, E. and Shur, M. S..Google Scholar
11 Huang, D., Fu, Y., and Morkoç, H., “Preparation, Structural and Optical Properties of GaN based quantum dots”, in “ “ Ed. Steiner, T., Artech House.Google Scholar
12 Morkoç, H., Nitride Semiconductors and Devices (Springer Verlag, Heidelberg, 1999, the second edition is in process);Google Scholar
Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer-Verlag, Heidelberg, 1997).Google Scholar
13 Kuball, M., Gleize, J., Tanaka, Satoru, and Aoyagi, Yoshinobu, Appl. Phys. Lett. 78, 987 (2001).Google Scholar
14 Tanaka, S., Iwai, S., and Aoyagi, Y., Appl. Phys. Lett., 69, 4096 (1996).Google Scholar
15 Shen, X. Q., Tanaka, S., Iwai, S., and Aoyagi, Y., Appl. Phys. Lett., 72, 344 (1998).Google Scholar
16 Widmann, F., Daudin, B., Feuillet, G., Samson, Y., Rouvière, J. L., and Pelekanos, N., J. Appl. Phys., 83, 7618 (1998).Google Scholar
17 Widmann, F., Simon, J., Daudin, B., Feuillet, G., Rouvière, J. L., Pelekanos, N. T., and Fishman, G., Phys. Rev. B, 58, R15989 (1998).Google Scholar
18 Damilano, B., Grandjean, N., Semond, F., Massies, J., and Leroux, M., Appl. Phys. Lett., 75, 962 (1999).Google Scholar
19 Li, Adam, Liu, Feng, Petrovykh, D.Y., Lin, J.-L., Viernow, J., Himpsel, F. J., and Lagally, M. G.,”, Phys. Rev. Lett, 85, 5380 (2000).Google Scholar
20 Gonsalves, Kenneth E., Rangarajan, Sri Prakash, Carlson, Greg, Kumar, Jayant and Yang, Ke, Appl. Phys. Lett, 71, 2175 (1997).Google Scholar
21 Borsella, E., Garcia, M.A., Mattei, G., Maurizio, C., Mazzoldi, P., Cattaruzza, E., Gonella, F., Battaglin, G., Quaranta, A., and D'Acapito, F., J. Appl. Phys, 90 (9), 4467 (2001).Google Scholar
22 Tanaka, S., Takeuchi, M., Aoyagi, Y., Jpn J. Appl. Phys, 39, (L831), (2000).Google Scholar
23 Woggon, U., Optical Properties of Semiconductor QD, Springer, Berlin, Heidelberg, NY (1997).Google Scholar
24 Lipsanen, H., Sopanen, M., Ahopelto, J., Phys. Rev. B, 51, 13868 (1995).Google Scholar
25 Chamard, V., Metzger, T.H., Daudin, B., Adelmann, C., Mariette, H. and Mula, G., Appl. Phys Lett, 79, 1971 (2001).Google Scholar
26 Talierco, T., Lefebvre, P., Gallart, M. and Morel, A., J. Condensed Matter Phys., 13, 7027 (2001).Google Scholar
27 Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).Google Scholar
28 Andreev, A. D. and O'Reilly, E. P., Physica E 10, 553 (2001).Google Scholar
29 Das, D. and Melissinos, A. C., Quantum Mechanics, (Gordon and Breach Science Publishers, New York, 1986).Google Scholar
30 Martin, G., Botchkarev, A., Rockett, A., and Morkoç, H., Appl. Phys. Lett., 68, 2541 (1996).Google Scholar
31 Davydov, V. Y., Averkiev, N. S., Goncharuk, I. N., Delson, D. K., Nikitina, I. P., Polkovnokov, A. S., Smirnov, A. N., and Jacobson, M. A., J. Appl. Phys. 82, 5097(1997).Google Scholar
32 Shikanai, A., Azuhata, T., Sota, T., Chichibu, S., Kuramata, A., Horino, K., and Nakamura, S., J. Appl. Phys. 81, 417 (1997).Google Scholar
33 Amano, H., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 2 27, L1384 (1998).Google Scholar
34 Shan, W., Hauenstein, R. J., Fischer, A. J., Song, J. J., Perry, W. G., Bremser, M. D., Davis, R. F., and Goldenber, B., Phys. Rev. B54, 13460 (1996).Google Scholar
35 Shimada, K., Sota, T., and Suzuki, K., J. Appl. Phys. 84, 4951(1998).Google Scholar
36 Martinez, O., Mazzoni, M., Rossi, F., Armani, N., Salviati, G., Lottici, P. P., and Bersani, D., Phys. Stat. Sol. (a), 195, pp. 2631, (2003).Google Scholar
37 Ramvall, P., Riblet, P., Nomura, S., Aoyagi, Y., and Tanaka, S., J. Appl. Phys. 87, 3883 (2000).Google Scholar
38 Nye, J. F., Physical Properties of Crystals, (Oxford University Press, Oxford, 1985).Google Scholar
39 Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B56, R10024 (1997).Google Scholar
40 Bernardini, F., Fiorentini, V. Physical Review B, 63, 193201 (2001).Google Scholar
41 Mendez, E. E., Bastard, G., Chang, L. L., Esaki, L., Morkoç, H., and Fischer, R., Phys. Rev. B26, 7101 (1982).Google Scholar
42 Miller, D. A. B., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Wood, T. H., and Burrus, C. A., Phys. Rev. B32, 1043 (1985).Google Scholar
43 Reshchikov, M. A., Cui, J., Yun, F., Visconti, P., Nathan, M. I., Molnar, R., and Morkoç, H. Fall MRS, 2000, Mat. Res. Soc. Symp. Proc. 639, G11.2 (2001).Google Scholar
44 Widmann, F., Simon, J., Pelekanos, N.T., Daudin, B., Feuillet, G., Rouviere, J.L., Fishman, G., Microelectronic Journal, 30, 353 (1999).Google Scholar
45 Hayes, J.M., Kuball, M., Bell, A., Harrison, I., Korakakis, D., and Foxon, C.T., Appl. Phys. Lett. 75, 2097 (1999).Google Scholar
46 Hayes, J.M., Kuball, M., Shi, Ying, and Edgar, J.H., Jpn. J. Appl. Phys. 39, L710 (2000).Google Scholar
47 Gleize, J., Demangeot, F., Frandon, J., and Renucci, M. A., Widmann, F. and Daudin, B., Appl. Phys. Lett., 74, 703 (1999).Google Scholar
48 Gleize, J., Demangeot, F., Frandon, J., Renucci, M.A., Kuball, M., Damilano, B., Grandjean, N., and Massies, J., Appl. Phys. Lett. 79, 686 (2001).Google Scholar
49 Yoffe, A.D., Adv. Phys., 42, 173 (1993).Google Scholar
50 Iizuka, N., Suzuk, N., Jpn J. Appl. Phys -1 39 (4B), 2376 (2000).Google Scholar
51 Harris, J.C., Someya, T., Kako, S., Hoshino, K. and Arakawa, Y., Appl. Phys. Lett. 77, 1005 (2000).Google Scholar