Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Akdogan, O. Li, W. Balasubramanian, B. Sellmyer, D. J. and Hadjipanayis, G. C. 2013. Effect of Exchange Interactions on the Coercivity of SmCo5Nanoparticles Made by Cluster Beam Deposition. Advanced Functional Materials, Vol. 23, Issue. 26, p. 3262.


    Ghoshal, Tandra Maity, Tuhin Senthamaraikannan, Ramsankar Shaw, Matthew T. Carolan, Patrick Holmes, Justin D. Roy, Saibal and Morris, Michael A. 2013. Size and space controlled hexagonal arrays of superparamagnetic iron oxide nanodots: magnetic studies and application. Scientific Reports, Vol. 3,


    Yang, Ce Jia, Lihui Wang, Shouguo Gao, Chen Shi, Dawei Hou, Yanglong and Gao, Song 2013. Single Domain SmCo5@Co Exchange-coupled Magnets Prepared from Core/shell Sm[Co(CN)6]·4H2O@GO Particles: A Novel Chemical Approach. Scientific Reports, Vol. 3,


    Akdogan, O. Li, W. Hadjipanayis, G. C. and Sellmyer, D. J. 2011. Synthesis of single-crystal Sm-Co nanoparticles by cluster beam deposition. Journal of Nanoparticle Research, Vol. 13, Issue. 12, p. 7005.


    ×

Hard Magnetic Nanoparticles and Nanocomposites

  • Anit Giri (a1), Krishna Chowdary (a1) and Sara A. Majetich (a1)
  • DOI: http://dx.doi.org/10.1557/PROC-577-197
  • Published online: 01 February 2011
Abstract
ABSTRACT

Many high performance permanent magnets are nanostructured materials. The magnetic properties of nanoparticles are discussed in terms of characteristic length scales, including the maximum monodomain size and the exchange length. Experimental results for ball milled SmCo5 nanoparticles are presented, showing deviations from idealized behavior. Because of the short exchange length, this can be understood in terms of independent nucleation of reverse domains in grains within larger particles. With a much longer exchange length, FeCo alloy nanoparticles show reduced coercivity in a high density compact, in accordance with the random anisotropy model. The SmCo5 and FeCo nanoparticles were mixed and compacted in an attempt to make an exchange spring nanocomposite. However, significant exchange between the hard and soft phases was not observed because the sample density was too low. Processing considerations for improved co-compaction of these nanoparticles are discussed.

Copyright
Corresponding author
Author to whom correspondence should be addressed. email: sm70@andrew.cmu.edu.
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.F. E. Luborsky , J. Appl. Phys. 32, 171S (1961).

2.G. Herzer , IEEE Trans. Mag. 25, 3327 (1989); IEEE Trans. Mag. 26, 1397 (1990); J. Magn. Magn. Mater. 112, 258 (1992).

3.G. C. Hadjipanayis , J. Appl. Phys. 55, 2091 (1984).

5.Y. Yoshizawa , S. Oguma , and K. Yamauchi , J. Appl. Phys. 64, 6044 (1988).

9.W. F. Brown Jr., J. Appl. Phys. 29, 470 (1958);J. Appl. Phys. 30, 130S (1959).

10.H. Kronmüller , in Science and Technology of Nanostructured Magnetic Materials, G. C. Hadjipanayis and G. A. Prinz , Plenum Press, NY, 1991, p. 657.

11.R. A. McCurrie and G. P. Carswell , J. Mater. Sci. 5, 825 (1970).

13.E. Kneller and R. Hawig , IEEE Trans. Mag. 27, 3588 (1991).

15.J. S. Jiang , E. E. Fullerton , M. Grimsditch , C. H. Sowers , and S. D. Bader , J. Appl. Phys. 83, 6238 (1998).

16.J. P. Liu , Y. Liu , Z. S. Shan , and D. J. Sellmyer , IEEE Trans. Mag. 33, 3709 (1997).

17.R. Coehoorn , D. B. de Mooij , and C. De Ward , J. Magn. Magn. Mater. 80, 101 (1989).

18.M. Sagawa , S. Hirosawa , H. Yamamoto , S. Fujimura , and Y. Matsura , Jpn. J. Appl. Phys. 26, 785 (1987).

19.R. W. McCallum , A. M. Kadin , G. B. Clemente , and J. E. Keem , J. Appl. Phys. 61, 3577 (1987).

20.P. G. McCormick , W. F. Miao , P. A. I. Smith , and R. Street , J. Appl. Phys. 83, 6256 (1998).

21.R. L. Schalek , D. Leslie-Pelecky , J. Knight , D. J. Sellmyer , and S. C. Axtell , IEEE Trans. Mag. 31, 3772 (1995).

22.J. Wecker , M. Katter , and L. Schultz , J. Appl. Phys. 69, 6058 (1991).

23.J. Ding , P. A. I. Smith , P. G. McCormick , R. Street , J. Magn. Magn. Mat. 161, 303 (1996).

24.S. A. Majetich , K. M. Chowdary , and E. M. Kirkpatrick , IEEE Trans. Mag. 34, 985 (1998); S. A. Majetich and E. M. Kirkpatrick, IEEE Trans. Mag. 33, 3721 (1997).

26.K. Kumar , J. Appl. Phys. 63, R13 (1988).

27.R. W. Bartlett and P. J. Jorgensen , J. Less-Common Metals, 37, 21 (1974).

28.M. G. Benz and D. L. Martin , J. Appl. Phys. 43, 3165 (1972).

29.K. J. Strnat , in Ferromagnetic Materials, eds. E. P. Wohlfarth and K. H. J. Buschow , (Elsevier, Amsterdam and New York, 1988), p. 131.

31.H. Zijlstra and F. F. Westerdorp , Solid State Commun, 7, 857 (1969).

32.X. G. Li , A. Chiba , and S. Takahashi , J. Appl. Phys. 81, 2895 (1997).

34.G. K. Williamson and W. H. Hall , Acta Metallurgica 1, 22 (1953).

36.A. Aharoni , J. Appl. Phys. 30, 705 (1959); Phys. Rev. 119, 127 (1960); J. H. Wernick, Ann. Rev. Mat. Sci. 2,607 (1972).

37.Y. Shimada and H. Kojima , J. Appl. Phys. 44, 5125 (1973).

38.F. Pfeifer and C. Radeloff , J. Magn. Magn. Mat. 19, 190 (1980).

39.G. Viau , F. Fievet-Vincent , and F. Fievet , J. Mater. Chem. 6, 1047 (1996).

40.R. Alben , J. J. Becker and M. C. Chi , J. Appl. Phys. 49, 1653 (1978).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×