Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T05:34:49.217Z Has data issue: false hasContentIssue false

High-κ Insulator Thin Films and Retention Properties of MFIS Diodes

Published online by Cambridge University Press:  13 September 2011

Yichun Zhou*
Affiliation:
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, China
*
Get access

Abstract

Ferroelectric field effect transistor (FFET) is a promising candidate for non-volatile random access memory because of its high speed, single device structure, low power consumption, and nondestructive read-out operation. Currently, however, such ideal devices are commercially not available due to poor interface properties between ferroelectric film and Si substrate, such as leakage current and interdiffusion etc. So we choose YSZ and HfO2 insulating thin films as buffer layer due to they possess relatively high dielectric constant, high thermal stability, low leakage current, and good interface property with Si substrates. Two structural diodes of Pt/BNT/YSZ/Si and Pt/SBT/HfO2/Si were fabricated, and the microstructures, interface properties, C-V, I-V, and retention properties were investigated in detail. Experimental results show that the fabricated diodes exhibit excellent long-term retention properties, which is due to the good interface and the low leakage density, demonstrating that the YSZ and HfO2 buffer layers are playing a critical modulation role between the ferroelectric thin film and Si substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J. F., Science 315, 954 (2007).Google Scholar
2. Lu, X., Ishiwara, H., Gu, X., Lubyshev, D., Fastenau, J., and Pelzel, R., J. Appl. Phys. 105, 024111 (2009).Google Scholar
3. Zhang, Y., Zhong, X. L., Wang, J. B., Song, H. J., Ma, Y., and Zhou, Y. C., Appl. Phys. Lett., 97, 103501 (2010)Google Scholar
4. Xie, D., Luo, Y. F., Han, X. G., Ren, T. L., and Liu, L. T., J. Appl. Phys. 106, 114117(2009).Google Scholar
5. Tang, M. H., Sun, Z. H., Zhou, Y. C., Sugiyama, Y., and Ishiwara, H., Appl. Phys. Lett., 94, 21290 (2009).Google Scholar
6. Juan, T. P., Chang, C., and Lee, J. Y., IEEE Electron Device Lett. 27, 217 (2006).Google Scholar
7. Juan, T. P., Lin, C., Shih, W., Yang, C., Lee, J. Y., Shye, D., and Lu, J., J. Appl. Phys. 105, 061625 (2009).Google Scholar
8. Murari, N. M., Thomas, R., Pavunny, S. P., Calzada, J. R., and Katiyar, R. S., Appl. Phys. Lett. 94, 142907 (2009).Google Scholar
9. Lu, X., Maruyama, K., Ishiwara, H., J. Appl. Phys. 103, 044105 (2008).Google Scholar
10. Zhong, X. L., Wang, J. B., Sun, L. Z., Tan, C. B., Zheng, X. J., and Zhou, Y. C., Appl. Phys. Lett. 90, 012906 (2007).Google Scholar
11. Lee, W. J., Shin, C. H., Cho, C. R., Ryu, J. S., Kim, B. W., Yu, B. G., and Cho, K. I., Jpn. J. Appl. Phys. 38, 2039 (1999).Google Scholar
12. Xu, Z., Kaczer, B., Johnson, J., Wouters, D., and Groeseneken, G., 96, 1614, J. Appl. Phys. (2004).Google Scholar
13. Gorman, B. P., and Anderson, H. U., Thin Solid Films 457, 258 (2004).Google Scholar
14. Wang, S. J., Ong, C. K., Xu, S. Y., Chen, P., Tjiu, W. C., Huan, A., Yoo, W. J., Lim, J. S., Feng, W., Choi, W. K., Semicond. Sci. Technol. 16, L13 (2001).Google Scholar