Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T06:03:00.518Z Has data issue: false hasContentIssue false

High Rate Charge/Discharge Characteristics in Composite Film of Mesoporous TiO2 and Polyaniline for Photorechargeable Battery

Published online by Cambridge University Press:  21 March 2014

Teruaki Nomiyama
Affiliation:
Department of Electrical and Electronics Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
Kenta Sakamoto
Affiliation:
Department of Electrical and Electronics Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
Tomohito Yoshida
Affiliation:
Department of Electrical and Electronics Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
Akinori Kagiyama
Affiliation:
Department of Electrical and Electronics Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
Yuji Horie
Affiliation:
Department of Electrical and Electronics Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
Get access

Abstract

One of promising photorechargeable electrode, which has two functions of photovoltaic and electrical energy storage, is a composite film of mesoporous TiO2 and conducting polymer polyaniline. Galvanostatic charge/discharge characteristics of the TiO2-polyaniline composite were examined to reveal how fast the film was charged. The film with a specific capacity 60-120 mAh g–1 was found to be fully charged at high charging rate 20 mA cm–2 which is comparable to high performance solar cells. Such high charging rate was achieved by the compact polyaniline layer covering the large specific surface area of mesoporous TiO2 film.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tributsch, H., Bennett, J.C., J. Electroanal. Chem., 81, 97111 (1977).CrossRefGoogle Scholar
Tributsch, H., Appl. Phys., 23, 6171 (1980).CrossRefGoogle Scholar
Tributsch, H., Solid State Ionics, 9-10, 4158 (1983).CrossRefGoogle Scholar
Zou, X., Maesako, N., Nomiyama, T., Horie, Y., Miyazaki, T., Sol. Energy Mat. Sol. Cells, 62, 133142 (2000).CrossRefGoogle Scholar
Zou, X., Nagao, T., Miyamoto, O., Nomiyama, T., Horie, Y., Miyazaki, T., Jpn. J. Appl. Phys., 43, 77077713 (2004).CrossRefGoogle Scholar
Usui, H., Miyamoto, O., Nomiyama, T., Horie, Y., Miyazaki, T., Trans. Mater. Res. Soc. Jpn., 29, 14631466 (2004).Google Scholar
Usui, H., Miyamoto, O., Nomiyama, T., Horie, Y., Miyazaki, T., Sol. Energy Mat. Sol. Cells, 86, 123134 (2005).CrossRefGoogle Scholar
Nomiyama, T., Takeuchi, H., Kawazoe, K., Horie, Y., Miyazaki, T., Jpn. J. Appl. Phys., 44, 52195224 (2005).CrossRefGoogle Scholar
Nomiyama, T., Sasabe, K., Horie, Y., Trans. Mater. Res. Soc. Jpn., submitted.Google Scholar
Mizuno, T., presented at Organic PVSolar Summit JAPAN 2009, Tokyo, JAPAN, 2009 (http://www.opvtoday.com/japan09/presentations/day1/TakakiMizuno.pdf).Google Scholar
Malta, M., Louarn, G., Errien, N., Torresi, R. M., Electrochem. Comm., 5, 10111015 (2003).CrossRefGoogle Scholar
Ryu, K. S., Hong, Y., Park, Y. J., Wu, X., Kim, K. M., Lee, Y., Chang, S. H., Lee, S. J., Solid State Ionics, 175, 759763 (2004).CrossRefGoogle Scholar
Canobre, S. C., Davoglio, R. A., Biaggio, S. R., Rocha-Filho, R. C., Bocchi, N., J. Power Sources, 154, 281286 (2006).CrossRefGoogle Scholar
Cheng, F., Tang, W., Li, C., Chen, J., Liu, H., Shen, P., Dou, S., Chem. Eur. J., 12, 30823088 (2006).CrossRefGoogle Scholar
Su, S., Kuramoto, N., Synth. Met, 114, 147153(2000).CrossRefGoogle Scholar
Sui, X., Chu, Y., Xing, S., Yu, M., Liu, C., Colloids and Surfaces A, 251, 103107 (2004).CrossRefGoogle Scholar
Sui, X., Chu, Y., Xing, S., Liu, C., Mater. Lett, 58, 12551259 (2004).CrossRefGoogle Scholar
Xu, J., Liu, W., Li, H., Mater. Sci. Eng. C, 25, 444447 (2005).CrossRefGoogle Scholar
Oh, M., Park, S., Jung, Y., Kim, S., Synth. Met, 162, 695701 (2012).CrossRefGoogle Scholar
Teli, S. B., Molina, S., Sotto, A., Garcia-Calvo, E., de Abajo, J., Ind. & Eng. Chem. Res., 52, 94709479 (2013).CrossRefGoogle Scholar
Yella, A., Lee, H., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M., Diau, E. W., Yeh, C., M Zakeeruddin, S., Gratzel, M., Science, 334, 629634 (2011).CrossRefGoogle Scholar
Winkels, S., Lohrengel, M. M., Electrochimica Acta, 42, 31173122 (1997).CrossRefGoogle Scholar
Gao, M., Yang, Y., Diao, M., Wang, S., Wang, X., Zhang, G., Zhang, G., Electrochimica Acta 56, 76447650(2011).CrossRefGoogle Scholar
Nakade, S., Saito, Y., Kubo, W., Kitamura, T., Wada, Y., and Yanagida, S., J. Phys. Chem. B, 107, 86078611 (2003).CrossRefGoogle Scholar
Tirosh, S., Dittrich, T., Ofir, A., Grinis, L., Zaban, A., J. Phys. Chem. B, 110, 1616516168 (2006).CrossRefGoogle Scholar
Ofir, A., Dor, S., Grinis, L., Zaban, A., Dittrich, T., Bisquert, J., J. Chem. Phys., 128, 64703, 19 (2008).CrossRefGoogle Scholar