Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T01:44:28.876Z Has data issue: false hasContentIssue false

Highly Active and Thermally Stable Ctlromophores and Polymers for Electro-Optic Applications

Published online by Cambridge University Press:  21 February 2011

Alex K-Y. Jen
Affiliation:
ROI Technology, 2000 Cornwall Road, Monmouth Junction, NJ 08852.
Tian-An Chen
Affiliation:
ROI Technology, 2000 Cornwall Road, Monmouth Junction, NJ 08852.
Varanasi Pushkara Rao
Affiliation:
ROI Technology, 2000 Cornwall Road, Monmouth Junction, NJ 08852.
Yong-Ming Cai
Affiliation:
ROI Technology, 2000 Cornwall Road, Monmouth Junction, NJ 08852.
Yue-Jin Liu
Affiliation:
ROI Technology, 2000 Cornwall Road, Monmouth Junction, NJ 08852.
Kevin J. Drost
Affiliation:
ROI Technology, 2000 Cornwall Road, Monmouth Junction, NJ 08852.
Robert M. Mininni
Affiliation:
ROI Technology, 2000 Cornwall Road, Monmouth Junction, NJ 08852.
Larry R. Dalton
Affiliation:
Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089-1062
Peter Bedworth
Affiliation:
Beckman Institute, California Institute of Technology, Pasadena, CA 91125
Seth R. Marder
Affiliation:
Beckman Institute, California Institute of Technology, Pasadena, CA 91125 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109.
Get access

Abstract

We have developed two new classes of highly active and thermally stable nonlinear optical (NLO) chromophores based on the use of efficient thiophene conjugating units, a N,N-diphenylamino electron-donating group, and a 1,1′-dicyanovinyl substituted electron-accepting group. We have also developed a facile and generally applicable method to functionalize NLO chromophores onto high temperature polymers to demonstrate both high electro-optic (E-O) coefficients and long-term alignment stability at 100 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hornak, L. A. (ed.), Polymers for Lightwave and Integrated Optics, Marcel Dekker, New York, 1992.Google Scholar
2. Chemala, D. S. and Zyss, J. (eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York, 1987.Google Scholar
3. Lytel, R. and Lipscomb, G. S., Mater. Res. Soc. Symp. Proc., 247, 17 (1992).Google Scholar
4. a) Marder, S. R., Sohn, J. E., Stucky, G. D. (eds.), Materials for Nonlinear Optics: Perspectives, ACS Symposium Series 455, Washington, 1991., b) A. F.Garito, A. KY. Jen, C.Y-C. Lee and L. R. Dalton (eds), Electrical, Optical and Magnetic Porperties of Organic Solid State Materials, Mater. Res. Soc. Symp. Proc., 328 (1994).Google Scholar
5. a) Wong, K. Y., Jen, A. K-Y. and Rao, V. P., Phys. Rev. A,, 49, 3077 (1994); b) K. Y. Wong, A. K-Y. Jen, V. P. Rao and K. J. Drost, J. Chem. Phys., 100, 6818, (1994).10.1103/PhysRevA.49.3077Google Scholar
6. Jen, A. K-Y., Rao, V. P., Wong, K. Y. and Drost, K. J., J. Chem. Soc., Chem. Commun., 90 (1993).Google Scholar
7. Rao, V. P., Jen, A. K-Y., Wong, K. Y. and Drost, K. J.,Tetrahedron Lett., 34, 1747; (1993).Google Scholar
8. Rao, V. P., Jen, A. K-Y., Wong, K. Y. and Drost, K. J., J. Chem. Soc., Chem. Commun., 1118 (1993).Google Scholar
9. Moylan, C. R., Twieg, R. J., Lee, V. Y., Swanson, S. A., Betterton, K. M., and Miller, R. D., J. Am. Chem. Soc. 115, 12599, (1993).Google Scholar
10. Jen, A. K-Y., Wong, K.Y., Rao, V. P., Drost, K. J. and Cai, Y. M., J. Electronic Mater., 23 (7), 653, (1994).Google Scholar
11. Whitetaker, C. M., Kott, K. L., Patterson, E. V., McMahon, R. J., Poster presented at 206th ACS National Meeting, Chicago, IL, (1993).Google Scholar
12. Wu, J., Valley, J. F., Ermer, S., Binkley, E. S., Kenney, J. T., Lipscomb, G. F., Lytel, R., Appl. Phys. Lett., 58, 225, (1991).Google Scholar
13. Wong, K. Y., Jen, A. K-Y., J. Appl. Phys., 75, 3308, (1994).Google Scholar
14. Xu, C., Wu, B., Dalton, L. R., Shi, Y., Ranon, P. M., Steier, W. H., Macromolecules, 24, 5421, (1991).Google Scholar
15. Park, J., Marks, T., Yang, J., Wong, G. K., Chem. Mater., 2, 229, (1990).Google Scholar
16. Zysset, B., Ahlheim, M., Stahelin, M., Lehr, F., Pretre, P., Kaatz, P., Gunter, P., Proc. SPIE, 2025, 70, (1993).Google Scholar
17. Becker, M., Sapochak, L., Ghosen, R., Xu, C., Dalton, L. R., Shi, Y., Steier, W. H., Jen, A. K-Y., Chem. Mater., 6, 104, (1994).Google Scholar
18. Peng, Z., Yu, L., Macromolecules, 27, 2638, (1994).Google Scholar
19. Jen, A. K-Y., Drost, K. J., Cai, Y., Rao, V. P., Dalton, L. R., J. Chem. Soc., Chem.Commun. 965, (1994).Google Scholar
20. (a) Miller, R. D.; Burland, D. M.; Dawson, D.; Hedrick, J.; Lee, V. Y.; Moylan, C. R.; Twieg, R. J.; Volksen, W.; Walsh, C. A. Polym. Prepr., 35, 122, (1994). (b) T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, W. Volksen, Macromolecules, 28, 3005, (1995).Google Scholar
21. (a) Yu, D., Gharavi, A., Yu, L., Macromolecules, 28, 784, (1995). (b) D. Yu, L. Yu, Macromolecules, 27, 6718, (1994).Google Scholar
22. (a) Jen, A. K-Y., Liu, Y. J., Cai, Y., Rao, V. P., Dalton, L. R., J. Chem. Soc., Chem. Commun., 2711, (1994). (b) A. K-Y. Jen, Y. Cai, K. J. Drost, Y. J. Liu, V. P. Rao, T.-A. Chen, R. M. Mininni, J. T. Kenney, Proceedings of the Am. Chem. Soc., PMSE, 72, 213, (1995).Google Scholar
23. Ho, B.-C., Liu, Y.-S., Lee, Y.-D., J. App. Polym. Sci., 53, 1513, (1994).Google Scholar
24. Mitsunobu, O., Synthesis, 1981 January, 1.Google Scholar
25. Chen, T.-A., Jen, A. K-Y., Cai, Y., J. Am. Chem. Soc. submitted.Google Scholar
26. Marks, T. J., Ratner, M. A., Angew. Chem. Int. Ed. Engl., 34, 155, (1995).Google Scholar
27. Teng, C. C., Men, H. T., Appl. Phys. Lett., 56, 1754, (1990).Google Scholar