Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T09:03:32.149Z Has data issue: false hasContentIssue false

High-Purity Germanium Crystal Growing

Published online by Cambridge University Press:  15 February 2011

W. L. Hansen
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
E.E. Haller
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 Department of Materials Science, University of California, Berkeley, CA 94720, U.S.A.
Get access

Abstract

The germanium crystals used for the fabrication of nuclear radiation detectors are required to have a purity and crystalline perfection which is unsurpassed by any other solid material. These crystals should not have a net electrically active impurity concentration greater than 10l0 cm−3 and be essentially free of charge trapping defects.

Such perfect crystals of germanium can be grown only because of the highly favorable chemical and physical properties of this element. However, ten years of laboratory scale and commercial experience has still not made the production of such crystals routine. The origin and control of many impurities and electrically active defect complexes is now fairly well understood but regular production is often interrupted for long periods due to the difficulty of achieving the required high purity or to charge trapping in detectors made from crystals seemingly grown under the required conditions.

The compromises involved in the selection of zone refining and crystal grower parts and ambients is discussed and the difficulty in controlling the purity of key elements in the process is emphasized. The consequences of growing in a hydrogen ambient are discussed in detail and it is shown how complexes of neutral defects produce electrically active centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haller, E. E. and Goulding, F. S. in: Handbook on Semiconductors, Hilsum, C. ed. (North-Holland 1980) Vol. 4, Ch. 6C.Google Scholar
2. Pell, E. M., J. Appl. Phys. 31, 291 (1960).CrossRefGoogle Scholar
3. Hall, R. N. in: Semiconductor Materials for γ-Ray Detectors—Proceedings of the Meeting, Brown (BTL), W. L. and Wagner (BNL), S. eds. (1966) p. 27.Google Scholar
4. Hubbard, G. S., Haller, E. E. and Hansen, W. L., IEEE Trans. Nucl. Sci. NS-25, No. 1, 362 (1978).CrossRefGoogle Scholar
5. Hall, R. N. and Soltys, T. J., IEEE Trans. Nucl. Sci. NS-18, No. 1, 160 (1971).CrossRefGoogle Scholar
6. Hansen, W. L., Nucl. Instr. and Methods 94, 377 (1971).CrossRefGoogle Scholar
7. Czochralski, J., Z. Phys. Chem. 92 219 (1918).CrossRefGoogle Scholar
8. Kittel, C., Introduction to Solid State Physics (John Wiley 1968) 3rd ed. p. 561.Google Scholar
9. Tweet, A. G., J. Appl. Phys. 30, 2002 (1959).CrossRefGoogle Scholar
10. Föll, H. and Kolbesen, B. O., J. Appl. Phys. 8, 319 (1975).CrossRefGoogle Scholar
11. Hall, R. N. and Soltys, T. J., IEEE Trans. Nucl. Sci. NS-18, No. 1, 160 (1971).CrossRefGoogle Scholar
12. Hailer, E. E., Hubbard, G. S., Hansen, W. L. and Seeger, A., Inst. Phys. Conf. Ser. No. 31, 309 (1977).Google Scholar
13. Glasow, P. and Hailer, E. E., IEEE Trans. Nucl. Sci. NS- 23, No. 1, 92 (1976).CrossRefGoogle Scholar
14. Ziegler, G., Z. Naturforsch. 169, 219 (1961).CrossRefGoogle Scholar
15. Ciszek, T. F. in: Semiconductor Silicon, Kern, E. L. and Haberecht, R. R. eds. (The Electrochemical Soc. 1969) p. 156.Google Scholar
16. Hubbard, G. S., Hailer, E. E. and Hansen, W. L., IEEE Trans. Nucl. Sci. NS- 26, No. 1, 303 (1979).CrossRefGoogle Scholar
17. Hailer, E. E., Hansen, W. L. and Goulding, F. S., Adv. in Physics 30, No. 1, 93 (1981) and references therein.CrossRefGoogle Scholar
18. Hansen, W. L. and Haller, E. E., IEEE Trans. Nucl. Sci. NS- 19, No. 1, 260 (1972).CrossRefGoogle Scholar
19. Edwards, W. D., J. Appl. Phys. 39 1784 (1968);CrossRefGoogle Scholar
19aibid. 39 2457 (1963).CrossRefGoogle Scholar
20. Hansen, W. L., Haller, E. E. and Luke, P. N., IEEE Trans. Nucl. Sci. NS- 29, No. 1, 738 (1982).CrossRefGoogle Scholar
21. Tavendale, A. J., Australian Atomic Energy Comm., private communication.Google Scholar
22. Fox, R. J., IEEE Trans. Nucl. Sci. NS-13, No. 3, 367 (1966).CrossRefGoogle Scholar
23. Haller, E. E., Hansen, W. L., Luke, P. N., McMurray, R. and Jarrett, B., IEEE Trans. Nucl. Sci. NS- 29, No. 1, 745 (1982).CrossRefGoogle Scholar
24. Haller, E. E., Joós, B. and Falicov, L. M., Phys. Rev. B 21, 4729 (1980).CrossRefGoogle Scholar
25. Hall, R. N., IEEE Trans. Nucl. Sci. NS- 19, No. 3, 266 (1972).CrossRefGoogle Scholar
26. Haller, E. E., Inst. Phys. Conf. Ser. No. 46, 205 (1979).Google Scholar
27. Hall, R. N., IEEE Trans. Nucl. Sci. NS- 21, No. 1, 260 (1974).CrossRefGoogle Scholar
28. Darken, L. S., IEEE Trans. Nucl. Sci. NS- 26, No. 1, 324 (1979).CrossRefGoogle Scholar
29. Darken, L. S., J. Electrochem. Soc. 126, 827 (1979).CrossRefGoogle Scholar
30. Nicollian, E. H. and Brews, J. R., MOS Physics and Technology (John Wiley 1982) p. 764.Google Scholar
31. Crawford, J. H. and Slifkin, L. M., Point Defects in Solids, Vol. 1 (Plenum Press 1972).CrossRefGoogle Scholar
32. Haller, E. E., Hansen, W. L., Hubbard, G. S. and Goulding, F. S., IEEE Trans. Nucl. Sci. NS- 23, No. 1, 81 (1976).CrossRefGoogle Scholar