Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T04:41:04.759Z Has data issue: false hasContentIssue false

Hvem in situ Study of High-Temperature Deformation of Ceramic and Metallic Materials

Published online by Cambridge University Press:  15 February 2011

U. Messerschmidt
Affiliation:
Max Planck Institute of Microstructure Physics, Halle/Saale, D-06120, F.R. Germany, um@secundus.mpi-msp-halle.mpg.de
D. Baither
Affiliation:
Max Planck Institute of Microstructure Physics, Halle/Saale, D-06120, F.R. Germany, um@secundus.mpi-msp-halle.mpg.de
M. Bartsch
Affiliation:
Max Planck Institute of Microstructure Physics, Halle/Saale, D-06120, F.R. Germany, um@secundus.mpi-msp-halle.mpg.de
B. Baufeld
Affiliation:
Max Planck Institute of Microstructure Physics, Halle/Saale, D-06120, F.R. Germany, um@secundus.mpi-msp-halle.mpg.de
D. Häuβler
Affiliation:
Max Planck Institute of Microstructure Physics, Halle/Saale, D-06120, F.R. Germany, um@secundus.mpi-msp-halle.mpg.de
R. Haushälter
Affiliation:
Max Planck Institute of Microstructure Physics, Halle/Saale, D-06120, F.R. Germany, um@secundus.mpi-msp-halle.mpg.de
M. Wollgarten
Affiliation:
KFA Research Centre J¨lich, D-52425, F.R. Germany
Get access

Abstract

A high-temperature straining stage was designed for the Halle HVEM. Electron bombardment is used to heat the specimen grips. At present the stage is operated at a maximum temperature of 1250 °C, but somewhat higher temperatures should also be possible. Details of the stage are described and results are presented on several materials. In yttria fully-stabilized (cubic) zirconia, the different slip behaviour on cube and octahedral planes is demonstrated at a specimen temperature of about 1150 °C. While the dislocations move very jerkily on the (primary) cube planes, their motion is more smooth on the octahedral planes suggesting the action of the Peierls mechanism. In t' zirconia, the switching of tetragonal domains was recorded during ferroelastic deformation. The same process was first observed for tetragonal precipitates in partially stabilized zirconia. In γ TiAl, at the temperature of the flow stress anomaly (about 650 °c), the so-called ordinary dislocations move in a viscous manner, in contrast to the room temperature behaviour, where glide seems to be controlled by localized obstacles. Over a wide temperature range in NiAl single crystals, moving dislocations show a discontinuous dependence of the curvature on the dislocation orientation, well agreeing with calculations of the line tension using anisotropic elasticity. Direct experimental proof of dislocation motion during plastic deformation of quasicrystals is first given for A1PdMn single quasicrystals. Dislocations smoothly move on planes orthogonal to threefold and fivefold directions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Butler, E. P. and Hale, K. F., Dynamic Experiments in the Electron Microscope, Vol.9 of Practical Methods of Electron Microscopy (North-Holland, Amsterdam 1981).Google Scholar
2. Fujita, H. and Komatsu, M. in Proc. 7th Int. Conf. on High Voltage Electron Microscopy, (Berkeley 1983), p. 371.Google Scholar
3. Komatsu, M., Mori, H. and Iwasaki, K., J. Am. Ceram. Soc. 77, p. 839 (1994).Google Scholar
4. Messerschmidt, U. and Bartsch, M., Ultramicroscopy 56, p. 163 (1994).Google Scholar
5. Valle, R., Genty, B., Marraud, A., and Cadoz, J. in EMAG 81, Inst. Phys. Conf. Ser. 61, (1982) p. 35.Google Scholar
6. Messerschmidt, U. and Appel, F., Ultramicroscopy 1, p. 223 (1976).Google Scholar
7. Messerschmidt, U. in Procedures in Electron Microscopy, edited by Robarts, T., Wilson, A. J. (John Wiley, Chichester 1993), Chapt. 9.12.Google Scholar
8. Martin, J. L. and Kubin, L. P., Ultramicroscopy 3, p.215 (1978).Google Scholar
9. Baufeld, B., Baither, D., Messerschmidt, U., Bartsch, M., and Merkel, I., J. Amer. Ceram. Soc. 76, p. 3163 (1993).Google Scholar
10. Proc. 5th Int. Conf. on the Science and Technology of Zirconia, Melbourne, Australia, (Technomic Publ., Lancester, Pa, 1993)Google Scholar
11. Baufeld, B., Bartsch, M., Messerschmidt, U., Baither, D., Acta metall. mater. 43, p. 1925 (1995).Google Scholar
12. Foitzik, A., Baither, D., Baufeld, B., Messerschmidt, U., Rühle, M., in preparationGoogle Scholar
13. Baither, D., Messerschmidt, U., Foitzik, A., Baufeld, B, Bartsch, M., Rühle, M., in preparationGoogle Scholar
14. Baufeld, B., Baither, D., Messerschmidt, U., and Bartsch, M., Phys. Status Solidi A 150, p. 297 (1995).Google Scholar
15. Yamaguchi, M. and Umakoshi, Y. in Progress in Materials Science, Vol.34 (Pergamon Press, Oxford 1990) p. 1.Google Scholar
16. Appel, F., Beaven, P. A., and Wagner, R., Acta metall. mater. 41, p. 1721 (1993).Google Scholar
17. Farenc, S., Coujou, A. and Couret, A., Philos. Mag. A 67, p. 127 (1993).Google Scholar
18. Messerschmidt, U., Bartsch, M., Häuβler, D., Aindow, M., Hattenhauer, R., Jones, I. P. in High Temperature Ordered Intermetallic Alloys VI, (Mat. Res. Soc. Proc. 364, Pittsburgh, PA 1995) p. 47.Google Scholar
19. Kad, B. K. and Frazer, H., Philos. Mag. A 69, p. 689 (1994).Google Scholar
20. Miracle, D. B., Acta metall. mater. 41, p. 649 (1993).Google Scholar
21. Haushälter, R. and Baither, D., unpublished resultsGoogle Scholar
22. Bak, P. and Goldman, A. I. in Introduction to Quasicrystals, edited by Jaric, M. V. (Academic Press, London 1988) p. 143.Google Scholar
23. Wollgarten, M., Beyss, M., Urban, K., Lieberetz, H., and Köster, U., Phys. Rev. Letters 71, p. 549 (1993).Google Scholar
24. Wollgarten, M., Bartsch, M., Messerschmidt, U., Feuerbacher, M., Rosenfeld, R., Beyss, M., and Urban, K., Philos. Mag. Letters 71, p. 99 (1995).Google Scholar