Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T08:44:30.743Z Has data issue: false hasContentIssue false

In Situ Parametric Investigation of the Mechanism of Diamond Film Deposition from Low Energy Ion Beams

Published online by Cambridge University Press:  25 February 2011

Y. Lifshitz
Affiliation:
University of Houston, Department of Chemistry, Houston, Texas 77204-5641 On sabbatical leave from Soreq NRC, Yavne 70600, Israel
S. R. Kasi
Affiliation:
University of Houston, Department of Chemistry, Houston, Texas 77204-5641
J. W. Rabalais
Affiliation:
University of Houston, Department of Chemistry, Houston, Texas 77204-5641
Get access

Abstract

A general scheme for the analysis of deposition from hyperthermal (10–5000 eV) species is presented. Successful deposition involves consideration of species range, maximum local concentration obtainable, trapping efficiency, radiation damage, and sputtering efficiency. Examples of in situ parametric investigations of carbon deposition performed with a controlled mass selected UHV ion beam facility are presented. A subplantation model for diamond film deposition is discussed. XRD evidence for epitaxial growth of diamond(111) on Si(111) is provided.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harper, J.M.E. et al. in Ion Bombardment Modification of Surfaces, edited by Auciello, O. and Kelly, R. (Elsvier Science Publishers, New York, 1984), chapter 4.Google Scholar
2. Klabunde, K. J., Ed., Thin Films From Free Atoms and Particles (Academic Press Inc., Orlando, FL 1985).Google Scholar
3. Mort, J., Jansen, F., Eds., Plasma Deposited Thin Films (CRC Press, Boca Raton, FL, 1986).Google Scholar
4. Greene, J. E. et al. , J. Crystal Growth 79, 19 (1986).Google Scholar
5. Takagi, T., Thin Solid Films 92 1 (1982).Google Scholar
6. Rossangel, S. M. and Cuomo, J. J., Vacuum 38(2), 73 (1988).Google Scholar
7. Miyake, K. and Tukuyama, T., Thin Solid Films 92, 123 (1982).CrossRefGoogle Scholar
8. Zalm, P. C. and Beckers, L. J., Appl. Phys. Lett. 41(2), 167 (1982).Google Scholar
9. Appleton, B. R., Zuhr, R. A., Noggle, T. S., Herbots, N., and Pennycook, S. J., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S. T., Williams, J. S., (Mater. Res. Soc. Proc. 74, Pittsburgh, PA 1987) p. 45.Google Scholar
10. Tsai, H., Bogi, D. B., J. Vac. Sci. Technol. A 5(6), 3287 (1987).Google Scholar
11. Lifshitz, Y., Kasi, S. R., and Rabalais, J. W., Adv. Mater. Manu. Proc. 3(2), 157 (1988).Google Scholar
12. Field, J. E., The Properties of Diamond (Academic Press Inc., London, 1979).Google Scholar
13. Aisenberg, S. and chabot, R., J. Appl. Phys. 42(7), 2953 (1971).Google Scholar
14. Spencer, E. G., Schmidt, P. H., Joy, D. C., and Sansalone, F. J., Appl. Phys. Lett. 29(2), 118 (1976).Google Scholar
15. Chaikovskii, E. F., Puzikov, V. M., and Semenov, A. V., Sov. Phys. Crystallogr. 26(11), 122 (1981).Google Scholar
16. Rabalais, J. W. and Kasi, S. R., Science 239, 623 (1988).Google Scholar
17. Kasi, S. R., Lifshitz, Y., Rabalais, J. W., and Lempert, J. D., Angewandte Chemie, Adv. Mater. 100(9), 1245 (1988).Google Scholar
18. Kang, H., Kasi, S. R., Rabalais, J. W., J. Chem. Phys. 88, 5882 (1988).Google Scholar
19. Lifshitz, Y., Kasi, S. R., and Rabalais, J. W., submitted to Phys. Rev. Lett.Google Scholar
20. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Ranges of Ions in Matter (Pergamon, Oxford, 1985), Vol. 1.Google Scholar
21. Lurie, P. G., Wilson, J. M., Surface Sci. 65, 476 (1977).CrossRefGoogle Scholar
22. Pate, B. B., Surface Sci. 165, 83 (1986).Google Scholar
23. Robertson, J. L., Moss, S. C., Lifshitz, Y., Kasi, S. R., Rabalais, J. W., Lempert, G. D., and Rapoport, E., submitted to Science.Google Scholar