Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T08:28:43.447Z Has data issue: false hasContentIssue false

In Situ Surface Passivation of GaAs by Thermal Nitridation using Metalorganic Vapor Phase Epitaxy

Published online by Cambridge University Press:  10 February 2011

Jingxi Sun
Affiliation:
Department of Chemical Engineering
F. J. Himpsel
Affiliation:
Department of Physics
A. B. Ellis
Affiliation:
Department of Chemistry University of Wisconsin-Madison Madison, WI 53706
T. F. Kuech
Affiliation:
Department of Chemical Engineering
Get access

Abstract

An ammonia-based, in situ passivation of GaAs surfaces conducted within a metalorganic vapor phase epitaxy reactor is present. The shift of the GaAs surface Fermi level, and hence the surface charge density, resulting from this in situ passivation, has been studied using photoreflectance (PR) spectroscopy. Samples consisting of an undoped GaAs layer on highly doped n-GaAs (UN+) and p-GaAs (UP+) structures allow for the exact determination of the surface Fermi level position using PR These structures were grown by MOVPE and in situ thermal nitridation was performed after growth within the MOVPE system without exposure to the air. After nitridation, the surface Fermi level can be shifted by ∼ 0.23 eV towards the conduction band edge for UN+ structures and by ∼ 0.11 eV towards the valence band edge for UP+ structures from the normally mid-gap ‘pinned’ positions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. DeLouise, Lisa A., J. Vac. Sci. Technol. A10 (1992) 1637.Google Scholar
2. Masuda, Atsushi, Yonezawa, Yasuto, Morimoto, Akiharu and Shimzu, Tatsuo, Jpn. J. Appi. Phys. 34 (1995) 1075.Google Scholar
3. Pollak, F. H. and Shen, H., Material Science & Engineering R 10 (7–8) (1993).Google Scholar
4. Van Hoof, C., Deneffe, K., De Boeck, J., Arent, D. J., and Borghs, G., Appl. Phys. Lett. 54 (1989) 608.Google Scholar
5. Aspnes, D. E., Phys. Rev. B10 (1974) 4228.Google Scholar
6. Yin, X., Chen, H- M., Pollak, F. H., Chan, Y., Montano, P. A., Kirchner, P. D., Pettit, G. D., and Woodall, J. M., I. Vac. Sci. Technol. A10 (1992) 131.Google Scholar
7. Kuech, T. F., Veuhoff, E., and Meyerson, B. S., J. Crystal Growth 68 (1984) 48.Google Scholar
8. Shen, H., Parayanthal, P., Liu, Y. F., and Pollak, F. H. Rev. Sci. Instrum. 58 (1987) 1429.Google Scholar
9. Biegelson, D.K., Bringans, R D., Northrup, J.E., and Swartz, L.-E., Phys. Rev. B41 (1990) 5701.Google Scholar
10. Reinhardt, F., Richter, W., Muller, A.B., Gutsche, D., Kurpas, P., Ploska, K., Rose, K.C. and Zorn, M., J. Vac. Sci. Technol. B 11 (1993) 1427.Google Scholar
11. Kisker, D. W., Stephenson, G. B., Fuoss, P. H., Lamelas, F. J., Brennan, S. and Imperatori, P., J. Crystal Growth, 124 (1992) 1.Google Scholar
12. Lamelas, F. J., Fuoss, P. H., Imperatori, P., Kisker, D. W., Stephenson, G. B. and Brennan, S., Appl. Phys. Lett. 60 (1992) 2610.Google Scholar
13. Payne, A.P., Fuoss, P.H., Kisker, D.W., Stephenson, G.B. and Brennan, S., Phys. Rev. B49 (1994) 14427.Google Scholar
14. Zhu, X. Y., Wolf, M., Huett, T., White, J. M., J. Chem. Phys. 97 (1992) 5856.Google Scholar