Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T02:12:05.150Z Has data issue: false hasContentIssue false

The Influence of Desulfovibrio Desulfuricans on Neptunium Chemistry

Published online by Cambridge University Press:  10 February 2011

L. Soderholm
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, IL, 60439. ls@anl.gov, mantonio@anl.goV
C.W. Williams
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, IL, 60439. ls@anl.gov, mantonio@anl.goV
Mark R. Antonio
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, IL, 60439. ls@anl.gov, mantonio@anl.goV
Monica Lee Tischler
Affiliation:
Department of Biological Sciences, Benedictine University, Lisle IL
Michael Markos
Affiliation:
Department of Biological Sciences, Benedictine University, Lisle IL
Get access

Abstract

Biotic Np(V) reduction is studied in light of its potential role for the environmental immobilization of this hazardous radionuclide. The speciation of Np in Desulfovibrio desulfuricans cultures is compared with Np speciation in the spent medium and in the uninoculated medium. Precipitates formed in all three samples. Optical spectroscopy, x-ray diffraction, and x-ray absorption near edge structure (XANES) were used to determine the Np speciation. After 5 days of incubation, there was very little Np left in solution, which was present as Np(V). The precipitate that formed in all samples is an amorphous Np(IV) species, establishing that Np(V) is almost quantitatively reduced. These results demonstrate that the reduction of Np is independent of Desulfovibrio desulfuricans. The underlying chemistry associated with these results is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fahey, J. A., in The Chemistry of the Actinide Elements, edited by Katz, J. J., Seaborg, G. T. and Morss, L. R. (Chapman and Hall, London, 1986), Vol. 1, p. Chapter 6.Google Scholar
2. Lovley, D. R., Phillips, E. J. P., Gorby, Y. A., and Landa, E. R., Nature 350, 413416 (1991).10.1038/350413a0Google Scholar
3. Lovley, D. R. and Phillips, E. J. P., Environ. Sci. Technol. 26, 22282234 (1992).10.1021/es00035a023Google Scholar
4. Barton, L. L., Choudhury, K., Thomson, B. M., Steenhoudt, K., and Groffman, A. R., Radioact. Waste Manag. Enviro. Restor. 20, 141151 (1996).Google Scholar
5. Lovley, D. R., Microbio. Rev. 55, 259287 (1991).Google Scholar
6. Antonio, M. R., Tischler, M., and Witzcak, D., (submitted, this conference).Google Scholar
7. Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 1980).Google Scholar
8. Hagen, P. G. and Cleveland, J. M., J. Inorg. Nucl. Chem 28, 2905 (1966).10.1016/0022-1902(66)80016-7Google Scholar
9. Soderholm, L., Antonio, M. R., Williams, C., and Wasserman, S. R., Anal. Chem. 71, 46224628 (1999).10.1021/ac990080tGoogle Scholar
10. Hudson, E. A., Rehr, J. J., and Bucher, J. J., Phys.Rev. B 52, 1381513826 (1995).10.1103/PhysRevB.52.13815Google Scholar
11. Ankudinov, A. L., Conradson, S. D., MustredeLeon, J., and Rehr, J. J., Phys.Rev.B 57, 75187525 (1998).10.1103/PhysRevB.57.7518Google Scholar
12. Pourbaix, M., Atlas of electrochemical equilibria in aqueous solutions (Pergamon Press, Oxford, 1966).Google Scholar
13. Sullivan, J. C., Cohen, D., and Hindman, J. C., J. Am. Chem. Soc. 1954, 42754279 (1954).10.1021/ja01646a006Google Scholar
14. Cunningham, B. B. and Hindman, J. C., The Actinide Elements, London, 1954).Google Scholar
15. Giaquinta, D. M., Soderholm, L., Yuchs, S. E., and Wasserman, S. R., Radiochim. Acta 76, 113121 (1997).10.1524/ract.1997.76.3.113Google Scholar
16. Wasserman, S. R., Soderholm, L., and Giaquinta, D. M., (submitted this conference).Google Scholar
17. Wasserman, S., Soderholm, L., and Staub, U., Chem. Mater. 10, 559566 (1998).10.1021/cm9705597Google Scholar
18. Hindman, J. C., Magnuson, L.B. and LaChapelle, T. J., J. Amer. Chem. Soc. 71, 687693 (1949).10.1021/ja01170a087Google Scholar